Existence and regularity of solutions for degenerate elliptic equations with variable growth

被引:0
作者
Benali Aharrouch
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Faculty of Sciences Dhar El Mahrez
来源
Journal of Elliptic and Parabolic Equations | 2023年 / 9卷
关键词
Elliptic problem; Marcinkiewicz space; Weak and entropy solutions; 46E35; 35J60; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence and regularity of solutions to a degenerate nonlinear elliptic problem with boundary conditions of the Dirichlet type -divb(x,v,∇v)=ginΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\text{ div }\>b(x,v,\nabla v)=g \ \text{ in }\ \Omega ,$$\end{document} where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded open set with smooth boundary in RN,(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^N, (N\ge 2)$$\end{document} and b(·,v,∇v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(\cdot ,v,\nabla v)$$\end{document} is a Carathéodory function and the second member g belongs to L1(Ω).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(\Omega ).$$\end{document} The main tools used are a priori estimates in Marcinkiewicz space with variable exponent.
引用
收藏
页码:627 / 646
页数:19
相关论文
共 83 条
  • [1] Acerbi E(2002)Regularity results for stationary electro-rheological fluids Arch. Ration. Mech. Anal. 164 213-259
  • [2] Mingione G(2007)Existence of solutions for unilateral problems in Appl. Anal. 13 151-181
  • [3] Aharouch L(2021) involving lower order terms in divergence form in Orlicz spaces J. Elliptic Parabol. Equ. 7 961-975
  • [4] Benkirane A(2019)Existence and regularity results for nonlinear and nonhomogeneous elliptic equation Appl. Math. 46 175-189
  • [5] Rhoudaf M(2019)Existence and uniqueness of solution for a unilateral problem in Sobolev paces with variable exponent Afr. Math. 30 755-776
  • [6] Aharrouch B(2003)Existence of weak and renormalized solutions of degenerated elliptic equation Ann. Mat. Pura Appl. 182 53-79
  • [7] Bennouna J(2020)Existence results for non-linear elliptic equations with degenerate coercivity Electron. J. Differ. Equ. 105 1-15
  • [8] Aharrouch B(2021)Nonlinear degenerate elliptic equations in weighted Sobolev spaces Nonlinear Stud. 28 237-252
  • [9] Bennouna J(2013)Existence of solutions for an elliptic problem with degenerate coercivity Commun. Pure Appl. Anal. 12 1201-1220
  • [10] Aharrouch B(1995)Nonlinear anisotropic elliptic and parabolic equations with variable exponents and Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 241-273