Special Lagrangian Submanifolds with Isolated Conical Singularities. II. Moduli spaces

被引:0
作者
Dominic Joyce
机构
[1] Lincoln College,
来源
Annals of Global Analysis and Geometry | 2004年 / 25卷
关键词
Calabi–Yau manifold; special Lagrangian submanifold; singularity;
D O I
暂无
中图分类号
学科分类号
摘要
This is the second in a series of five papers studying special Lagrangiansubmanifolds (SLV m-folds) X in (almost) Calabi–Yau m-foldsM with singularities x1, ..., xn locally modelled on specialLagrangian conesC1, ..., Cn in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{C}$$ \end{document}m with isolated singularities at 0.Readers are advised to begin with Paper V.
引用
收藏
页码:301 / 352
页数:51
相关论文
共 13 条
[1]  
Harvey R.(1982)Calibrated geometries Acta Math. 148 47-157
[2]  
Lawson H. B.(1997)The moduli space of Special Lagrangian submanifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 503-515
[3]  
Hitchin N. J.(2002)Special Lagrangian Duke Math. J. 115 1-51
[4]  
Joyce D. D.(2001)-folds in ℂ Math. Ann. 320 757-797
[5]  
Joyce D. D.(2001) with symmetries Ann. Global Anal. Geom. 20 345-403
[6]  
Joyce D. D.(2004)Constructing special Lagrangian Ann. Global Anal. Geom. 25 201-251
[7]  
Joyce D. D.(2003)-folds in ℂ J. Differential Geom. 63 279-347
[8]  
Joyce D. D.(2003) by evolving quadrics J. London Math. Soc. 67 769-789
[9]  
McIntosh I.(1998)Evolution equations for special Lagrangian 3-folds in ℂ Comm. Anal. Geom. 6 705-747
[10]  
McLean R. C.(1996)Special Lagrangian submanifolds with isolated conical singularities. I. Regularity Nuclear Phys. B 479 243-259