Holographic superfluids as duals of rotating black strings

被引:0
作者
Yves Brihaye
Betti Hartmann
机构
[1] Universite de Mons-Hainaut,Physique
[2] Jacobs University Bremen,Mathématique
来源
Journal of High Energy Physics | / 2010卷
关键词
AdS-CFT Correspondence; Black Holes;
D O I
暂无
中图分类号
学科分类号
摘要
We study the breaking of an Abelian symmetry close to the horizon of an uncharged rotating Anti-de Sitter black string in 3+1 dimensions. The boundary theory living on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R}^{2} \times S^{1} $$\end{document} has no rotation, but a magnetic field that is aligned with the axis of the black string. This boundary theory describes non-rotating (2+1)-dimensional holographic superfluids with non-vanishing superfluid velocity. We study these superfluids in the grand canonical ensemble and show that for sufficiently small angular momentum of the dual black string and sufficiently small superfluid velocity the phase transition is 2nd order, while it becomes 1st order for larger superfluid velocity. Moreover, we observe that the phase transition is always 1st order above a critical value of the angular momentum independent of the choice of the superfluid velocity.
引用
收藏
相关论文
共 60 条
[1]  
Aharony O(2000)Large-N field theories, string theory and gravity Phys. Rept. 323 183-undefined
[2]  
Gubser SS(1998)The large-N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231-undefined
[3]  
Maldacena JM(2008)Breaking an abelian gauge symmetry near a black hole horizon Phys. Rev. D 78 065034-undefined
[4]  
Ooguri H(2008)Building a holographic superconductor Phys. Rev. Lett. 101 031601-undefined
[5]  
Oz Y(2008)Holographic superconductors JHEP 12 015-undefined
[6]  
Maldacena JM(2008)Holographic superconductors with various condensates Phys. Rev. D 78 126008-undefined
[7]  
Gubser SS(2009)Lectures on holographic superfluidity and superconductivity J. Phys. A 42 343001-undefined
[8]  
Hartnoll SA(2009)Lectures on holographic methods for condensed matter physics Class. Quant. Grav. 26 224002-undefined
[9]  
Herzog CP(1982)Stability in gauged extended supergravity Ann. Phys. 144 249-undefined
[10]  
Horowitz GT(2008)Critical magnetic field in a holographic superconductor Phys. Rev. D 78 046004-undefined