The independence graph of a finite group

被引:0
作者
Andrea Lucchini
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica “Tullio Levi
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
Generating sets; Generating graph; Connectivity; Planarity; Soluble groups; 20D60; 05C25;
D O I
暂无
中图分类号
学科分类号
摘要
Given a finite group G, we denote by Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} the graph whose vertices are the elements G and where two vertices x and y are adjacent if there exists a minimal generating set of G containing x and y. We prove that Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} is connected and classify the groups G for which Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta (G)$$\end{document} is a planar graph.
引用
收藏
页码:845 / 856
页数:11
相关论文
共 38 条
[1]  
Apisa P(2014)A generalization of the Burnside basis theorem J. Algebra 400 8-16
[2]  
Klopsch B(2006)Sets of permutations that generate the symmetric group pairwise J. Combin. Theory Ser. A 113 1572-1581
[3]  
Blackburn SR(2008)Probabilistic generation of finite simple groups II J. Algebra 320 443-494
[4]  
Breuer T(2010)Hamiltonian cycles in the generating graphs of finite groups Bull. Lond. Math. Soc. 42 621-633
[5]  
Guralnick R(2013)On the generating graph of direct powers of a simple group J. Algebraic Combin. 38 329-350
[6]  
Kantor W(2002)Independent generating sets and geometries for symmetric groups J. Algebra 258 641-650
[7]  
Breuer T(2018)Generating sets of finite groups Trans. Am. Math. Soc. 370 6751-6770
[8]  
Guralnick RM(2015)The generating graph of a finite soluble groups Israel J. Math. 207 739-761
[9]  
Lucchini A(2013)The graph of the generating $d$-tuples of a finite soluble group and the swap conjecture J. Algebra 376 79-88
[10]  
Maróti A(2016)The swap graph of the finite soluble groups J. Algebraic Combin. 44 447-454