Metallicity calibration and photometric parallax estimation: II. SDSS photometry

被引:0
|
作者
S. Tunçel Güçtekin
S. Bilir
S. Karaali
O. Plevne
S. Ak
T. Ak
Z. F. Bostancı
机构
[1] Istanbul University,Graduate School of Science and Engineering, Department of Astronomy and Space Sciences
[2] Istanbul University,Department of Astronomy and Space Sciences, Faculty of Science
来源
Astrophysics and Space Science | 2017年 / 362卷
关键词
Galaxy: disc; Galaxy: halo; Stars: abundances; Stars: distances;
D O I
暂无
中图分类号
学科分类号
摘要
We used the updated [Fe/H] abundances of 168 F-G type dwarfs and calibrated them to a third order polynomial in terms of reduced ultraviolet excess, δ0.41\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta_{0.41}$\end{document} defined with ugr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{ugr}$\end{document} data in the SDSS. We estimated the Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{g}$\end{document} absolute magnitudes for the same stars via the re-reduced Hipparcos parallaxes and calibrated the absolute magnitude offsets, ΔMg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta M_{g}$\end{document}, relative to the intrinsic sequence of Hyades to a third order polynomial in terms of δ0.41\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta_{0.41}$\end{document}. The ranges of the calibrations are −2<[Fe/H]≤0.3dex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-2<\mbox{[Fe/H]}\leq 0.3~\mbox{dex}$\end{document} and 4<Mg≤6mag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4< M_{g}\leq 6~\mbox{mag}$\end{document}. The mean of the residuals and the corresponding standard deviation for the metallicity calibration are 0 and 0.137 mag; while, for the absolute magnitude calibration they are 0 and 0.179 mag, respectively. We applied our procedures to 23,414 dwarf stars in the Galactic field with the Galactic coordinates 85∘≤b≤90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$85^{\circ }\leq b\leq 90^{ \circ }$\end{document}, 0∘≤l≤360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0^{\circ }\leq l\leq 360^{\circ }$\end{document} and size 78 deg2. We estimated absolute magnitude Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{g}$\end{document} dependent vertical metallicity gradients as a function of vertical distance Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z$\end{document}. The gradients are deep in the range of 0<Z≤5kpc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< Z\leq 5~\mbox{kpc}$\end{document}, while they are very small positive numbers beyond Z=5kpc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z=5~\mbox{kpc}$\end{document}. All dwarfs with 5<Mg≤6mag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$5< M_{g}\leq 6~\mbox{mag}$\end{document} are thin-disc stars and their distribution shows a mode at (g−r)0≈0.38mag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(g-r)_{0}\approx 0.38~\mbox{mag}$\end{document}, while the absolute magnitudes 4<Mg≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4< M_{g} \leq 5$\end{document} are dominated by thick disc and halo stars, i.e. the apparently bright ones (g0≤18mag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{0}\leq 18~\mbox{mag}$\end{document}) are thick-disc stars with a mode at (g−r)0∼0.38mag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(g-r)_{0}\sim 0.38~\mbox{mag}$\end{document}, while the halo population is significant in the faint stars (g0>18mag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g_{0}>18~\mbox{mag}$\end{document}).
引用
收藏
相关论文
共 50 条
  • [41] Neutron-capture elements in dwarf galaxies: II. Challenges for the s- and i-processes at low metallicity
    Skuladottir, A.
    Hansen, C. J.
    Choplin, A.
    Salvadori, S.
    Hampel, M.
    Campbell, S. W.
    ASTRONOMY & ASTROPHYSICS, 2020, 634 (634)
  • [42] The Carina spiral feature: Stromgren-β photometry approach II. Distances and space distribution of the O and B stars
    Kaltcheva, N.
    Scorcio, M.
    ASTRONOMY & ASTROPHYSICS, 2010, 514
  • [43] Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique II. The effect of metallicity and the distance to the LMC
    Storm, J.
    Gieren, W.
    Fouque, P.
    Barnes, T. G.
    Soszynski, I.
    Pietrzynski, G.
    Nardetto, N.
    Queloz, D.
    ASTRONOMY & ASTROPHYSICS, 2011, 534
  • [44] Metal-poor Stars Observed with the Automated Planet Finder Telescope. II. Chemodynamical Analysis of Six Low-metallicity Stars in the Halo System of the Milky Way
    Mardini, Mohammad K.
    Placco, Vinicius M.
    Taani, Ali
    Li, Haining
    Zhao, Gang
    ASTROPHYSICAL JOURNAL, 2019, 882 (01)
  • [45] Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations
    Chung, Chul
    Yoon, Suk-Jin
    Lee, Young-Wook
    ASTROPHYSICAL JOURNAL, 2017, 842 (02)
  • [46] Estimation of stellar metal abundance. II. A recalibration of the Ca II K technique, and the autocorrelation function method
    Beers, TC
    Rossi, S
    Norris, JE
    Ryan, SG
    Shefler, T
    ASTRONOMICAL JOURNAL, 1999, 117 (02) : 981 - 1009
  • [47] Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets II. Effect of stellar metallicity
    Bolmont, E.
    Gallet, F.
    Mathis, S.
    Charbonnel, C.
    Amard, L.
    Alibert, Y.
    ASTRONOMY & ASTROPHYSICS, 2017, 604
  • [48] Astrometric radial velocities II. Maximum-likelihood estimation of radial velocities in moving clusters
    Lindegren, L
    Madsen, S
    Dravins, D
    ASTRONOMY & ASTROPHYSICS, 2000, 356 (03): : 1119 - 1135
  • [49] Evolution of long-lived globular cluster stars II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity
    Charbonnel, Corinne
    Chantereau, William
    ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [50] Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Galactic bulge studies
    Gonzalez, O. A.
    Rejkuba, M.
    Zoccali, M.
    Valenti, E.
    Minniti, D.
    Schultheis, M.
    Tobar, R.
    Chen, B.
    ASTRONOMY & ASTROPHYSICS, 2012, 543