Local probabilities for random walks conditioned to stay positive

被引:0
作者
Vladimir A. Vatutin
Vitali Wachtel
机构
[1] Steklov Mathematical Institute RAS,
[2] Technische Universität München,undefined
[3] Zentrum Mathematik,undefined
来源
Probability Theory and Related Fields | 2009年 / 143卷
关键词
Limit theorems; Random walks; Stable laws; 60G50; 60G52; 60E07;
D O I
暂无
中图分类号
学科分类号
摘要
Let S0 = 0, {Sn, n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X1, X2, . . . and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{-}={\rm min} \{ n \geq 1:S_{n}\leq 0 \}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{+}={\rm min}\{n\geq1:S_{n} > 0\} $$\end{document}. Assuming that the distribution of X1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\rightarrow \infty }$$\end{document}, of the local probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(\tau ^{\pm }=n)}$$\end{document} and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(S_{n} \in [x,x+\Delta )|\tau^{-} > n)}$$\end{document} with fixed Δ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x=x(n)\in (0,\infty )}$$\end{document}.
引用
收藏
页码:177 / 217
页数:40
相关论文
共 50 条
[41]   Disordered Random Walks [J].
Mauricio P. Pato .
Brazilian Journal of Physics, 2021, 51 :238-243
[42]   Hyperlink prediction via local random walks and Jensen-Shannon divergence [J].
Xu, Xin-Jian ;
Deng, Chong ;
Zhang, Li-Jie .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (03)
[43]   A quenched limit theorem for the local time of random walks on Z2 [J].
Gaertner, Juergen ;
Sun, Rongfeng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (04) :1198-1215
[44]   LAWS OF THE ITERATED LOGARITHM FOR THE LOCAL-TIMES OF RECURRENT RANDOM-WALKS ON Z(2) AND OF LEVY PROCESSES AND RANDOM-WALKS IN THE DOMAIN OF ATTRACTION OF CAUCHY RANDOM-VARIABLES [J].
MARCUS, MB ;
ROSEN, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1994, 30 (03) :467-499
[45]   ON THE ASYMPTOTIC BEHAVIOR OF LOCAL PROBABILITIES OF A MULTIDIMENSIONAL RANDOM WALK CROSSING NONLINEAR BOUNDARIES [J].
Ragimov, F. G. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2010, 54 (02) :333-U18
[46]   Survival of Branching Random Walks in Random Environment [J].
Gantert, Nina ;
Mueller, Sebastian ;
Popov, Serguei ;
Vachkovskaia, Marina .
JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) :1002-1014
[47]   Extremes for transient random walks in random sceneries under weak independence conditions [J].
Chenavier, Nicolas ;
Darwiche, Ahmad .
STATISTICS & PROBABILITY LETTERS, 2020, 158
[48]   Random random walks on the integers mod n [J].
Dai, JJ ;
Hildebrand, MV .
STATISTICS & PROBABILITY LETTERS, 1997, 35 (04) :371-379
[49]   Collisions of random walks in reversible random graphs [J].
Hutchcroft, Tom ;
Peres, Yuval .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 :2-6
[50]   EINSTEIN RELATION FOR RANDOM WALKS IN RANDOM ENVIRONMENT [J].
Guo, Xiaoqin .
ANNALS OF PROBABILITY, 2016, 44 (01) :324-359