Local probabilities for random walks conditioned to stay positive

被引:0
作者
Vladimir A. Vatutin
Vitali Wachtel
机构
[1] Steklov Mathematical Institute RAS,
[2] Technische Universität München,undefined
[3] Zentrum Mathematik,undefined
来源
Probability Theory and Related Fields | 2009年 / 143卷
关键词
Limit theorems; Random walks; Stable laws; 60G50; 60G52; 60E07;
D O I
暂无
中图分类号
学科分类号
摘要
Let S0 = 0, {Sn, n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X1, X2, . . . and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{-}={\rm min} \{ n \geq 1:S_{n}\leq 0 \}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{+}={\rm min}\{n\geq1:S_{n} > 0\} $$\end{document}. Assuming that the distribution of X1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\rightarrow \infty }$$\end{document}, of the local probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(\tau ^{\pm }=n)}$$\end{document} and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(S_{n} \in [x,x+\Delta )|\tau^{-} > n)}$$\end{document} with fixed Δ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x=x(n)\in (0,\infty )}$$\end{document}.
引用
收藏
页码:177 / 217
页数:40
相关论文
共 50 条
[31]   DEeP Random Walks [J].
Moghaddam, Mandana Javanshir ;
Eslami, Abouzar ;
Navab, Nassir .
MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
[32]   Bootstrap random walks [J].
Collevecchio, Andrea ;
Hamza, Kais ;
Shi, Meng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (06) :1744-1760
[33]   Random walks in a sparse random environment [J].
Matzavinos, Anastasios ;
Roitershtein, Alexander ;
Seol, Youngsoo .
ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
[34]   THE EXTREMES OF RANDOM WALKS IN RANDOM SCENERIES [J].
Franke, Brice ;
Saigo, Tatsuhiko .
ADVANCES IN APPLIED PROBABILITY, 2009, 41 (02) :452-468
[35]   Biased random walks on random graphs [J].
Ben Arous, Gerard ;
Fribergh, Alexander .
PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 :99-153
[36]   Distributed Random Walks [J].
Das Sarma, Atish ;
Nanongkai, Danupon ;
Pandurangan, Gopal ;
Tetali, Prasad .
JOURNAL OF THE ACM, 2013, 60 (01)
[37]   Disordered Random Walks [J].
Pato, Mauricio P. .
BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (02) :238-243
[38]   On the meeting of random walks on random DFA [J].
Quattropani, Matteo ;
Sau, Federico .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 166
[39]   Random walks on random simple graphs [J].
Hildebrand, M .
RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (04) :301-318
[40]   Collisions of random walks [J].
Barlow, Martin T. ;
Peres, Yuval ;
Sousi, Perla .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (04) :922-946