Local probabilities for random walks conditioned to stay positive

被引:0
|
作者
Vladimir A. Vatutin
Vitali Wachtel
机构
[1] Steklov Mathematical Institute RAS,
[2] Technische Universität München,undefined
[3] Zentrum Mathematik,undefined
来源
Probability Theory and Related Fields | 2009年 / 143卷
关键词
Limit theorems; Random walks; Stable laws; 60G50; 60G52; 60E07;
D O I
暂无
中图分类号
学科分类号
摘要
Let S0 = 0, {Sn, n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X1, X2, . . . and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{-}={\rm min} \{ n \geq 1:S_{n}\leq 0 \}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{+}={\rm min}\{n\geq1:S_{n} > 0\} $$\end{document}. Assuming that the distribution of X1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\rightarrow \infty }$$\end{document}, of the local probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(\tau ^{\pm }=n)}$$\end{document} and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(S_{n} \in [x,x+\Delta )|\tau^{-} > n)}$$\end{document} with fixed Δ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x=x(n)\in (0,\infty )}$$\end{document}.
引用
收藏
页码:177 / 217
页数:40
相关论文
共 50 条
  • [21] RANDOM WALKS CONDITIONED TO STAY IN WEYL CHAMBERS OF TYPE C AND D
    Koenig, Wolfgang
    Schmid, Patrick
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 286 - 296
  • [22] Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment
    Vatutin, Vladimir A.
    Dong, Congzao
    Dyakonova, Elena E.
    SBORNIK MATHEMATICS, 2023, 214 (11) : 1501 - 1533
  • [23] Conditioned local limit theorems for random walks on the real line
    Grama, Ion
    Xiao, Hui
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2025, 61 (01): : 403 - 456
  • [24] WEAK CONVERGENCE OF RANDOM WALKS, CONDITIONED TO STAY AWAY FROM SMALL SETS
    Pajor-Gyulai, Zsolt
    Szasz, Domokos
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2013, 50 (01) : 122 - 128
  • [25] Random Walks with Invariant Loop Probabilities: Stereographic Random Walks
    Montero, Miquel
    ENTROPY, 2021, 23 (06)
  • [26] An invariance principle for random walk bridges conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 32
  • [27] Law of the iterated logarithm for oscillating random walks conditioned to stay non-negative
    Hambly, BM
    Kersting, G
    Kyprianou, AE
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (02) : 327 - 343
  • [28] LIMIT THEOREMS FOR MARKOV WALKS CONDITIONED TO STAY POSITIVE UNDER A SPECTRAL GAP ASSUMPTION
    Grama, Ion
    Lauvergnat, Ronan
    Le Page, Emile
    ANNALS OF PROBABILITY, 2018, 46 (04): : 1807 - 1877
  • [29] Random walks with similar transition probabilities
    Schiefermayr, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 423 - 432
  • [30] Survival probabilities of weighted random walks
    Aurzada, Frank
    Baumgarten, Christoph
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2011, 8 : 235 - 258