Local probabilities for random walks conditioned to stay positive

被引:0
|
作者
Vladimir A. Vatutin
Vitali Wachtel
机构
[1] Steklov Mathematical Institute RAS,
[2] Technische Universität München,undefined
[3] Zentrum Mathematik,undefined
来源
Probability Theory and Related Fields | 2009年 / 143卷
关键词
Limit theorems; Random walks; Stable laws; 60G50; 60G52; 60E07;
D O I
暂无
中图分类号
学科分类号
摘要
Let S0 = 0, {Sn, n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X1, X2, . . . and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{-}={\rm min} \{ n \geq 1:S_{n}\leq 0 \}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ^{+}={\rm min}\{n\geq1:S_{n} > 0\} $$\end{document}. Assuming that the distribution of X1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\rightarrow \infty }$$\end{document}, of the local probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(\tau ^{\pm }=n)}$$\end{document} and prove the Gnedenko and Stone type conditional local limit theorems for the probabilities \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf P}{(S_{n} \in [x,x+\Delta )|\tau^{-} > n)}$$\end{document} with fixed Δ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x=x(n)\in (0,\infty )}$$\end{document}.
引用
收藏
页码:177 / 217
页数:40
相关论文
共 50 条
  • [1] Local probabilities for random walks conditioned to stay positive
    Vatutin, Vladimir A.
    Wachtel, Vitali
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 143 (1-2) : 177 - 217
  • [2] Local probabilities for random walks with negative drift conditioned to stay nonnegative
    Denisov, Denis
    Vatutin, Vladimir
    Wachtel, Vitali
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 18
  • [3] A local limit theorem for random walks conditioned to stay positive
    Francesco Caravenna
    Probability Theory and Related Fields, 2005, 133 : 508 - 530
  • [4] A local limit theorem for random walks conditioned to stay positive
    Caravenna, F
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) : 508 - 530
  • [5] Scaling limit of the local time of random walks conditioned to stay positive
    Hong, Wenming
    Sun, Mingyang
    JOURNAL OF APPLIED PROBABILITY, 2024, 61 (03) : 1060 - 1074
  • [6] Invariance principles for random walks conditioned to stay positive
    Caravenna, Francesco
    Chaumont, Loic
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (01): : 170 - 190
  • [7] GROWTH OF RANDOM-WALKS CONDITIONED TO STAY POSITIVE
    RITTER, GA
    ANNALS OF PROBABILITY, 1981, 9 (04): : 699 - 704
  • [8] Large deviation results for random walks conditioned to stay positive
    Doney, Ronald A.
    Jones, Elinor M.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 11
  • [9] RANDOM-WALKS WITH NEGATIVE DRIFT CONDITIONED TO STAY POSITIVE
    IGLEHART, DL
    JOURNAL OF APPLIED PROBABILITY, 1974, 11 (04) : 742 - 751
  • [10] INVARIANCE PRINCIPLES FOR INTEGRATED RANDOM WALKS CONDITIONED TO STAY POSITIVE
    Baer, Michael
    Duraj, Jetlir
    Wachtel, Vitali
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (01): : 127 - 160