A Tight Upper Bound on Acquaintance Time of Graphs

被引:0
作者
Omer Angel
Igor Shinkar
机构
[1] University of British Columbia,Department of Mathematics
[2] New York University,Courant Institute of Mathematical Sciences
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Acquaintance time of graph;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we confirm a conjecture raised by Benjamini et al. (SIAM J Discrete Math 28(2):767–785, 2014) on the acquaintance time of graphs, proving that for all graphs G with n vertices it holds that AC(G)=O(n3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {AC}(G) = O(n^{3/2})$$\end{document}. This is done by proving that for all graphs G with n vertices and maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} it holds that AC(G)≤20Δn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {AC}(G) \le 20 \varDelta n$$\end{document}. Combining this with the bound AC(G)≤O(n2/Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {AC}(G) \le O(n^2/\varDelta )$$\end{document} from Benjamini et al. (SIAM J Discrete Math 28(2):767–785, 2014) gives the uniform upper bound of O(n3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{3/2})$$\end{document} for all n-vertex graphs. This bound is tight up to a multiplicative constant. We also prove that for the n-vertex path Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} it holds that AC(Pn)=n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {AC}(P_n)=n-2$$\end{document}. In addition we show that the barbell graph Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document} consisting of two cliques of sizes ⌈n/2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lceil n/2\rceil }$$\end{document} and ⌊n/2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor n/2\rfloor }$$\end{document} connected by a single edge also has AC(Bn)=n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {AC}(B_n) = n-2$$\end{document}. This shows that it is possible to add Ω(n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n^2$$\end{document}) edges a graph without changing its AC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {AC}$$\end{document} value.
引用
收藏
页码:1667 / 1673
页数:6
相关论文
共 16 条
[1]  
Alon N(1994)Routing permutations on graphs via matchings SIAM J. Discrete Math. 7 513-530
[2]  
Chung FRK(1996)Short random walks on graphs SIAM J. Discrete Math. 9 19-28
[3]  
Graham RL(2014)Acquaintance time of a graph SIAM J. Discrete Math. 28 767-785
[4]  
Barnes G(1988)A survey of gossiping and broadcasting in communication networks Networks 18 319-349
[5]  
Fiege U(2015)Maximizing the spread of influence through a social network Theor of Comput 11 105-147
[6]  
Benjamini I(1983)Limit distribution for the existence of hamiltonian cycles in a random graph Discrete Math. 43 55-63
[7]  
Shinkar I(undefined)undefined undefined undefined undefined-undefined
[8]  
Tsur G(undefined)undefined undefined undefined undefined-undefined
[9]  
Hedetniemi ST(undefined)undefined undefined undefined undefined-undefined
[10]  
Hedetniemi SM(undefined)undefined undefined undefined undefined-undefined