𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}\mathcal {T}$\end{document}-Symmetric Dimer in a Generalized Model of Coupled Nonlinear Oscillators

被引:0
|
作者
Jesús Cuevas–Maraver
Avinash Khare
Panayotis G. Kevrekidis
Haitao Xu
Avadh Saxena
机构
[1] Universidad de Sevilla,Nonlinear Physics Group, Departamento de Física Aplicada I
[2] Escuela Politécnica Superior,Department of Mathematics and Statistics
[3] Instituto de Matemáticas de la Universidad de Sevilla (IMUS). Edificio Celestino Mutis.,Center for Nonlinear Studies and Theoretical Division
[4] Indian Institute of Science Education and Research (IISER),undefined
[5] University of Massachusetts,undefined
[6] Los Alamos National Laboratory,undefined
关键词
Oscillators; PT-symmetry; Stability; Periodic orbits;
D O I
10.1007/s10773-014-2429-6
中图分类号
学科分类号
摘要
In the present work, we explore the case of a general 𝒫𝒯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}\mathcal {T}$\end{document}-symmetric dimer in the context of two both linearly and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the rotating wave approximation converting it into a discrete nonlinear Schrödinger type dimer. In the latter context, the stationary solutions and their stability are identified numerically but also wherever possible analytically. Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by means of direct numerical simulations.
引用
收藏
页码:3960 / 3985
页数:25
相关论文
共 50 条