The Unique Properties of Superconductivity in Cuprates

被引:0
作者
K. A. Müller
机构
[1] Physik-Institut der Universität Zürich,
来源
Journal of Superconductivity and Novel Magnetism | 2014年 / 27卷
关键词
Superconductivity; Cuprates;
D O I
暂无
中图分类号
学科分类号
摘要
Copper oxides are the only materials that have transition temperatures, Tc, well above the boiling point of liquid nitrogen, with a maximum Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document} of 162 K under pressure. Their structure is layered, with one to several CuO2 planes, and upon hole doping, their transition temperature follows a dome-shaped curve with a maximum of Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document}. In the underdoped regime, i.e., below Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document}, a pseudogap Δ* ∝ T* is found, with T* always being larger than Tc, a property unique to the copper oxides. In the superconducting state, Cooper pairs (two holes with antiparallel spins) are formed that exhibit coherence lengths on the order of a lattice distance in the CuO2 plane and one order of magnitude less perpendicular to it. Their macroscopic wave function is parallel to the CuO2 plane near 100 % d at their surface, but only 75 % d and 25 % s in the bulk, and near 100 % s perpendicular to the plane in yttrium barium copper oxide (YBCO) [1]. There are two gaps with the same Tc [2]. As function of doping, the oxygen isotope effect is novel and can be quantitatively accounted for by a vibronic theory or by the presence of bipolarons [2, 3]. These cuprates are intrinsically heterogeneous in a dynamic way. In terms of quasiparticles, bipolarons are present at low doping and aggregate upon cooling [2] so that probably ramified clusters and/or stripes are formed, leading over to a more Fermi liquid-type behavior at large carrier concentrations.
引用
收藏
页码:2163 / 2179
页数:16
相关论文
共 50 条
  • [31] Superconductivity in Striped and Multi-Fermi-Surface Hubbard Models: From the Cuprates to the Pnictides
    Maier, Thomas A.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2012, 25 (05) : 1307 - 1311
  • [32] Superconductivity in the cuprates as a consequence of antiferromagnetism and a large hole density of states
    Dagotto, E
    Nazarenko, A
    Moreo, A
    Haas, S
    JOURNAL OF SUPERCONDUCTIVITY, 1996, 9 (04): : 379 - 387
  • [33] Is there a path from cuprates towards room-temperature superconductivity?
    Božović I.
    Wu J.
    He X.
    Bollinger A.T.
    Quantum Studies: Mathematics and Foundations, 2018, 5 (1) : 55 - 63
  • [34] Superconductivity from repulsion: Ginzburg-Landau phenomenology of cuprates
    Belyavsky, V. I.
    Kopaev, Yu. V.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2006, 19 (3-5) : 251 - 259
  • [35] Superconductivity and antiferromagnetism in cuprates and pnictides: Evidence of the role of Coulomb correlation
    Fan, J. D.
    Malozovsky, Y. M.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 493 : 7 - 11
  • [36] Interplay of CDW, SDW and superconductivity in high-Tc cuprates
    Panda, S. K.
    Rout, G. C.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2009, 469 (13): : 702 - 706
  • [37] Intermediate coupling model of cuprates: Adding fluctuations to a weak coupling model of pseudogap and superconductivity competition
    Markiewicz, R. S.
    Das, Tanmoy
    Basak, Susmita
    Bansil, A.
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2010, 181 (01) : 23 - 27
  • [38] Anion height as a controlling parameter for the superconductivity in iron pnictides and cuprates
    Kuroki, Kazuhiko
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2011, 72 (05) : 307 - 314
  • [39] Superconductivity in a unique type of copper oxide
    Li, W. M.
    Zhao, J. F.
    Cao, L. P.
    Hu, Z.
    Huang, Q. Z.
    Wang, X. C.
    Liu, Y.
    Zhao, G. Q.
    Zhang, J.
    Liu, Q. Q.
    Yu, R. Z.
    Long, Y. W.
    Wu, H.
    Lin, H. J.
    Chen, C. T.
    Li, Z.
    Gong, Z. Z.
    Guguchia, Z.
    Kim, J. S.
    Stewart, G. R.
    Uemura, Y. J.
    Uchida, S.
    Jin, C. Q.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (25) : 12156 - 12160
  • [40] Theoretical aspects of simple and nested Fermi surfaces for superconductivity in doped semiconductors and high-Tc cuprates
    Jarlborg, T.
    SOLID STATE COMMUNICATIONS, 2014, 181 : 15 - 19