The Unique Properties of Superconductivity in Cuprates

被引:0
作者
K. A. Müller
机构
[1] Physik-Institut der Universität Zürich,
来源
Journal of Superconductivity and Novel Magnetism | 2014年 / 27卷
关键词
Superconductivity; Cuprates;
D O I
暂无
中图分类号
学科分类号
摘要
Copper oxides are the only materials that have transition temperatures, Tc, well above the boiling point of liquid nitrogen, with a maximum Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document} of 162 K under pressure. Their structure is layered, with one to several CuO2 planes, and upon hole doping, their transition temperature follows a dome-shaped curve with a maximum of Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document}. In the underdoped regime, i.e., below Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document}, a pseudogap Δ* ∝ T* is found, with T* always being larger than Tc, a property unique to the copper oxides. In the superconducting state, Cooper pairs (two holes with antiparallel spins) are formed that exhibit coherence lengths on the order of a lattice distance in the CuO2 plane and one order of magnitude less perpendicular to it. Their macroscopic wave function is parallel to the CuO2 plane near 100 % d at their surface, but only 75 % d and 25 % s in the bulk, and near 100 % s perpendicular to the plane in yttrium barium copper oxide (YBCO) [1]. There are two gaps with the same Tc [2]. As function of doping, the oxygen isotope effect is novel and can be quantitatively accounted for by a vibronic theory or by the presence of bipolarons [2, 3]. These cuprates are intrinsically heterogeneous in a dynamic way. In terms of quasiparticles, bipolarons are present at low doping and aggregate upon cooling [2] so that probably ramified clusters and/or stripes are formed, leading over to a more Fermi liquid-type behavior at large carrier concentrations.
引用
收藏
页码:2163 / 2179
页数:16
相关论文
共 50 条
  • [21] Superconductivity, pseudo-gap, and stripe correlations in high-Tc, cuprates
    Zhang, Zailan
    Denis, Sylvain
    Lebert, Blair W.
    Bertran, Francois
    Le Fevre, Patrick
    Taleb-Ibrahimi, Amina
    Castellan, John-Paul
    Le Bolloc'h, David
    Jacques, Vincent L. R.
    Sidis, Yvan
    Baptiste, Benoit
    Decorse, Claudia
    Berthet, Patrick
    Perfetti, Luca
    d'Astuto, Matteo
    PHYSICA B-CONDENSED MATTER, 2018, 536 : 747 - 751
  • [22] Experimental evidence for a transition to BCS superconductivity in overdoped cuprates
    Deutscher, Guy
    Electron Correlation in New Materials and Nanosystems, 2007, 241 : 141 - 148
  • [23] Evolution of coherence and superconductivity in electron-doped cuprates
    Blumberg, G.
    Qazilbash, M. M.
    Dennis, B. S.
    Greene, R. L.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 525 - +
  • [24] On the theory of high-Tc superconductivity of doped cuprates
    Pogorelov, Y. G.
    Loktev, V. M.
    CONDENSED MATTER PHYSICS, 2018, 21 (03)
  • [25] A spatial interpretation of emerging superconductivity in lightly doped cuprates
    Deutscher, Guy
    de Gennes, Pierre-Gilles
    COMPTES RENDUS PHYSIQUE, 2007, 8 (7-8) : 937 - 941
  • [26] Anisotropic scattering and superconductivity in high-Tc cuprates
    French, M. M. J.
    Abdel-Jawad, M.
    Analytis, J. G.
    Balicas, L.
    Hussey, N. E.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2008, 69 (12) : 3191 - 3194
  • [27] Superconductivity and magnetic order in thallium-based cuprates
    Khlybov, EP
    Kostyleva, IE
    Nizhankovskii, VI
    Palewski, T
    Warchulska, J
    Nenkov, K
    PHYSICA B, 2001, 294 : 367 - 370
  • [28] Superconductivity from Repulsion: Ginzburg–Landau Phenomenology of Cuprates
    V. I. Belyavsky
    Yu. V. Kopaev
    Journal of Superconductivity and Novel Magnetism, 2006, 19 : 251 - 259
  • [29] Spin fluctuations and superconductivity in doped cuprates midgap states
    Agafonov, AI
    Manykin, EA
    PHYSICA B-CONDENSED MATTER, 1999, 259-61 : 458 - 459
  • [30] Superconductivity in Striped and Multi-Fermi-Surface Hubbard Models: From the Cuprates to the Pnictides
    Thomas A. Maier
    Journal of Superconductivity and Novel Magnetism, 2012, 25 : 1307 - 1311