The Unique Properties of Superconductivity in Cuprates

被引:0
|
作者
K. A. Müller
机构
[1] Physik-Institut der Universität Zürich,
来源
Journal of Superconductivity and Novel Magnetism | 2014年 / 27卷
关键词
Superconductivity; Cuprates;
D O I
暂无
中图分类号
学科分类号
摘要
Copper oxides are the only materials that have transition temperatures, Tc, well above the boiling point of liquid nitrogen, with a maximum Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document} of 162 K under pressure. Their structure is layered, with one to several CuO2 planes, and upon hole doping, their transition temperature follows a dome-shaped curve with a maximum of Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document}. In the underdoped regime, i.e., below Tcm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm {c}}^{\mathrm {m}}$\end{document}, a pseudogap Δ* ∝ T* is found, with T* always being larger than Tc, a property unique to the copper oxides. In the superconducting state, Cooper pairs (two holes with antiparallel spins) are formed that exhibit coherence lengths on the order of a lattice distance in the CuO2 plane and one order of magnitude less perpendicular to it. Their macroscopic wave function is parallel to the CuO2 plane near 100 % d at their surface, but only 75 % d and 25 % s in the bulk, and near 100 % s perpendicular to the plane in yttrium barium copper oxide (YBCO) [1]. There are two gaps with the same Tc [2]. As function of doping, the oxygen isotope effect is novel and can be quantitatively accounted for by a vibronic theory or by the presence of bipolarons [2, 3]. These cuprates are intrinsically heterogeneous in a dynamic way. In terms of quasiparticles, bipolarons are present at low doping and aggregate upon cooling [2] so that probably ramified clusters and/or stripes are formed, leading over to a more Fermi liquid-type behavior at large carrier concentrations.
引用
收藏
页码:2163 / 2179
页数:16
相关论文
共 50 条
  • [1] The Unique Properties of Superconductivity in Cuprates
    Mueller, K. A.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (10) : 2163 - 2179
  • [2] Designing Superlattices of Cuprates and Ferrites for Superconductivity
    Ikeda, Ai
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2672 - 2681
  • [3] Relation between ordering and superconductivity in cuprates
    Tassini, L.
    Prestel, W.
    Erb, A.
    Lambacher, M.
    Hackl, R.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (5-9) : 1092 - 1094
  • [4] Antiferromagnetism and superconductivity in cuprates
    Plakida, NM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 258 : 401 - 405
  • [5] Superconductivity in Cuprates: Details of Electron Phonon Coupling
    Larsson, Sven
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (05) : 1117 - 1126
  • [6] Topological Doping and Superconductivity in Cuprates: An Experimental Perspective
    Tranquada, John M.
    SYMMETRY-BASEL, 2021, 13 (12):
  • [7] Stripes and superconductivity in cuprates - Is there a connection?
    Kumar, N
    Rao, CNR
    CHEMPHYSCHEM, 2003, 4 (05) : 439 - 444
  • [8] Spins, Stripes, and Superconductivity in Hole-Doped Cuprates
    Tranquada, John M.
    LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XVII, 2013, 1550 : 114 - 187
  • [9] Appearance of antiferromagnetism and superconductivity in superconducting cuprates
    Kucab, Krzysztof
    Gorski, Grzegorz
    Mizia, Jerzy
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 490 : 10 - 19
  • [10] Study of superconductivity and antiferromagnetism gaps in cuprates
    Panda, S. K.
    Rout, G. C.
    INDIAN JOURNAL OF PHYSICS, 2007, 81 (01) : 55 - 61