共 24 条
- [1] Unextendible maximally entangled bases in Cpd⊗Cqd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{pd}\otimes {\mathbb {C}}^{qd}$$\end{document} Quantum Information Processing, 2018, 17
- [2] Mutually unbiased maximally entangled bases in Cd⊗Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^d$$\end{document} Quantum Information Processing, 2017, 16 (6)
- [3] Mutually unbiased maximally entangled bases in Cd⊗Ckd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d\otimes \mathbb {C}^{kd}$$\end{document} Quantum Information Processing, 2015, 14 (6) : 2291 - 2300
- [4] Mutually Unbiased Property of Maximally Entangled Bases and Product Bases in ℂd⊗ℂd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{d}\otimes \mathbb {C}^{d}$\end{document} International Journal of Theoretical Physics, 2018, 57 (11) : 3463 - 3472
- [5] Mutually Unbiased Unextendible Maximally Entangled Bases in ℂd⊗ℂd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{d}\otimes \mathbb {C}^{d + 1}$\end{document} International Journal of Theoretical Physics, 2018, 57 (12) : 3785 - 3794
- [6] Mutually Unbiasedness between Maximally Entangled Bases and Unextendible Maximally Entangled Systems in ℂ2⊗ℂ2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{2}\otimes \mathbb {C}^{2^{k}}$\end{document} International Journal of Theoretical Physics, 2016, 55 (2) : 886 - 891
- [7] Two Types of Maximally Entangled Bases and Their Mutually Unbiased Property in ℂd⊗ℂd′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{d}\otimes \mathbb {C}^{d^{\prime }}$\end{document} International Journal of Theoretical Physics, 2016, 55 : 5069 - 5076
- [8] Construction of mutually unbiased bases in Cd⊗C2ld′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'}$$\end{document} Quantum Information Processing, 2015, 14 (7) : 2635 - 2644
- [9] Mutually unbiased special entangled bases with Schmidt number 2 in C3⊗C4k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}$$\end{document} Quantum Information Processing, 2018, 17 (3)
- [10] Construction of mutually unbiased maximally entangled bases in C2s⊗C2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2^s}\otimes {\mathbb {C}}^{2^s}$$\end{document} by using Galois rings Quantum Information Processing, 2020, 19 (6)