Field response of legumes to inoculation with plant growth-promoting rhizobacteria

被引:0
|
作者
Angaw Tsigie
Kolluru V. B. R. Tilak
Anil K. Saxena
机构
[1] Indian Agricultural Research Institute,Division of Microbiology
[2] Osmania University,Department of Botany
来源
Biology and Fertility of Soils | 2011年 / 47卷
关键词
PGPR; Soybean; Lentil; Inoculation; Response;
D O I
暂无
中图分类号
学科分类号
摘要
Carrier-based (soil/FYM, 1:1) plant growth-promoting rhizobacteria (PGPR) isolates (Bacillus subtilis, Klebsiella planticola and Proteus vulgaris) were tested individually and in combination with Bradyrhizobium japonicum and Rhizobium leguminosarum biovar viciae under field conditions on soybean and lentil crops, respectively, under field conditions. Inoculation of soybean (Glycine max) cv. Pusa 22 with B. subtilis produced maximum nodule number, mass and nitrogenase activity (acetylene reduction activity, ARA) followed by B. japonicum (SB 271). Maximum soybean yield was registered with the coinoculation of B. japonicum and B. subtilis over an uninoculated control. Maximum nodulation in the lentil (Lens culinaris) cv. L 4147 was obtained with a combination of R. leguminosarum (L-12-87) and P. vulgaris inoculation followed by a single inoculation with Rhizobium and B. subtilis. None of the PGPR isolates either singly or in coinoculation with R. leguminosarum could significantly influence the yield of the lentil crop.
引用
收藏
页码:971 / 974
页数:3
相关论文
共 50 条
  • [1] Field response of legumes to inoculation with plant growth-promoting rhizobacteria
    Tsigie, Angaw
    Tilak, Kolluru V. B. R.
    Saxena, Anil K.
    BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (08) : 971 - 974
  • [2] YIELD AND GROWTH RESPONSE OF STRAWBERRY TO PLANT GROWTH-PROMOTING RHIZOBACTERIA INOCULATION
    Erturk, Y.
    Ercisli, S.
    Cakmakci, R.
    JOURNAL OF PLANT NUTRITION, 2012, 35 (06) : 817 - 826
  • [3] Effect of co-inoculation of plant growth-promoting rhizobacteria on the growth of amaranth plants
    Chatterjee, Swagata
    Sau, Gopi Ballav
    Sinha, Sangram
    Mukherjee, Samir Kumar
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (12) : 1387 - 1397
  • [4] Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria
    del Rosario Cappellari, Lorena
    Valeria Santoro, Maricel
    Nievas, Fiorela
    Giordano, Walter
    Banchio, Erika
    APPLIED SOIL ECOLOGY, 2013, 70 : 16 - 22
  • [5] Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria
    Chanway, CP
    Shishido, M
    Nairn, J
    Jungwirth, S
    Markham, J
    Xiao, G
    Holl, FB
    FOREST ECOLOGY AND MANAGEMENT, 2000, 133 (1-2) : 81 - 88
  • [6] Plant Growth-Promoting Rhizobacteria Improve Rice Response to Climate Change Conditions
    Redondo-Gomez, Susana
    Mesa-Marin, Jennifer
    Perez-Romero, Jesus A.
    Mariscal, Vicente
    Molina-Heredia, Fernando P.
    Alvarez, Consolacion
    Pajuelo, Eloisa
    Rodriguez-Llorente, Ignacio D.
    Mateos-Naranjo, Enrique
    PLANTS-BASEL, 2023, 12 (13):
  • [7] BIOTECHNOLOGICAL POTENTIAL OF SOYBEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA
    de Paula, Gabriel Ferreira
    Demetrio, Gilberto Bueno
    Matsumoto, Leopoldo Sussumu
    REVISTA CAATINGA, 2021, 34 (02) : 328 - 338
  • [8] Plant growth-promoting rhizobacteria act as biostimulants in horticulture
    Ruzzi, Maurizio
    Aroca, Ricardo
    SCIENTIA HORTICULTURAE, 2015, 196 : 124 - 134
  • [9] Characterization of the Bioactive Metabolites from a Plant Growth-Promoting Rhizobacteria and Their Exploitation as Antimicrobial and Plant Growth-Promoting Agents
    George, Emrin
    Kumar, S. Nishanth
    Jacob, Jubi
    Bommasani, Bhaskara
    Lankalapalli, Ravi S.
    Morang, P.
    Kumar, B. S. Dileep
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 176 (02) : 529 - 546
  • [10] Growth and Yield Response of Upland Rice to Application of Plant Growth-Promoting Rhizobacteria
    Cavite, Harry Jay M.
    Mactal, Ariel G.
    Evangelista, Editha V.
    Cruz, Jayvee A.
    JOURNAL OF PLANT GROWTH REGULATION, 2021, 40 (02) : 494 - 508