Local and parallel finite element algorithms for eigenvalue problems

被引:0
作者
Xu J. [1 ]
Zhou A. [2 ]
机构
[1] Center for Computational Mathematics and Applications, Department of Mathematics, Pennsylvania State University, University Park
[2] Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Eigenvalue; Finite element; Local algorithm; Parallel algorithm;
D O I
10.1007/s102550200018
中图分类号
学科分类号
摘要
Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids. © Springer-Verlag 2002.
引用
收藏
页码:185 / 200
页数:15
相关论文
共 38 条
[1]  
Adams R.A., Sobolev Spaces, (1975)
[2]  
Axelsson O., Layton W., A two-level discretization of nonlinear boundary value problems, SIAM J. Numer. Anal., 33, pp. 2359-2374, (1996)
[3]  
Babuska I., Osborn J.E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 52, pp. 275-297, (1989)
[4]  
Babuska I., Osborn J.E., Eigenvalue problems, Handbook of Numerical Analysis, Vol.2, Finite Element Methods, 2, 1 PART, pp. 641-792, (1991)
[5]  
Baker N., Holst M., Wang F., Adaptive multilevel finite element solution of the Poisson-Boltzmann equation IT: Refinement at solvent accessible surfaces in biomolecular systems, J. Comput. Chem., 21, pp. 1343-1352, (2000)
[6]  
Bank R.E., Hierarchical bases and the finite element method, Acta Numerica, 5, pp. 1-43, (1996)
[7]  
Bank R.E., Holst M., A new paradigm for parallel adaptive meshing algorithms, SIAM J. Sci. Comput., 22, pp. 1411-1443, (2001)
[8]  
Bedivan D.M., A two-grid method for solving elliptic problems with inhomogeneous boundary conditions, Comput. Math. Appl., 29, pp. 59-66, (1995)
[9]  
Bramble J.H., Multigrid methods, Pitman Research Notes in Mathematics, 294, (1993)
[10]  
Chan T., Mathew T., Domain decomposition algorithms, Acta Numerica, 3, pp. 61-143, (1994)