On automorphisms and embeddings of free periodic groups

被引:0
作者
A. S. Pahlevanyan
H. R. Rostami
机构
[1] Yerevan State University,
来源
Journal of Contemporary Mathematical Analysis | 2011年 / 46卷
关键词
Free Burnside group; group of automorphisms; free semigroup; free monoid; periodic group; 20F50; 20F05; 20F28; 20M05; 20E36;
D O I
暂无
中图分类号
学科分类号
摘要
The paper gives a construction of a free monoid of rank 2 in the group of automorphisms of free periodic groups B(m, n) of any odd period n ≥ 665 and any rank m > 1.Moreover, it is proved that if the period is any prime numbern > 1003 and the group B(m, n) is nested in some n-periodic group G as a normal subgroup, then B(m, n) is a direct factor in G.
引用
收藏
页码:106 / 112
页数:6
相关论文
共 9 条
  • [1] Novikov P. S.(1968)On infinite periodic groups. I, II, III Izv. AN SSSR, Ser.Matem. 32 212-244
  • [2] Adian S. I.(2006)Normal automorphisms of free Burnside groups of large odd exponents Intern., J. Algebra Comput. 16 839-847
  • [3] Cherepanov E. A.(2010)Non Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) 45 21-36
  • [4] Atabekyan V. S.(2011)-admissible normal subgroups of free Burnside groups Izv. Rus. Akad. Nauk, Ser.Mat. 75 3-18
  • [5] Atabekyan V. S.(2005)Normal automorphisms of free Burnside groups Communications in Algebra 33 539-547
  • [6] Cherepanov E. A.(2009)Free semigroup in the group of automorphisms of the free Burnside group Proceedings of the Yerevan State University, Phys. and Math. Sciences 219 38-42
  • [7] Pahlevanyan A. S.(2009)Infinite order automorphisms of free periodic groups of sufficiently large exponent Fund. i Prikl. Matem. 15 3-21
  • [8] Atabekyan V. S.(2008)Normalizers of free subgroups of free Burnside groups of odd order Armen. J.Math. 1 25-29
  • [9] Atabekyan V. S.(undefined) ≥ 1003 undefined undefined undefined-undefined