On average losses in the ruin problem with fractional Brownian motion as input

被引:0
作者
Patrick Boulongne
Daniel Pierre-Loti-Viaud
Vladimir Piterbarg
机构
[1] Université Paris 8,
[2] Université Pierre et Marie Curie,undefined
[3] Moscow Lomonosov State University,undefined
来源
Extremes | 2009年 / 12卷
关键词
Gaussian process; Large excursions; Average loss; Ruin problem; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{t}=u+ct-B_{t}^{H}$\end{document}, where u > 0, c > 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{t}^{H}$\end{document} is the fractional Brownian motion with Hurst parameter H, 0 < H < 1. We study the asymptotic behavior of average losses in the case of ruin, i.e. the asymptotic behavior of the conditional expected value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E\left( -\inf _{t\in\lbrack0,T]}S_{t}\left\vert \inf_{t\in\lbrack0,T]}S_{t}<0\right. \right) $\end{document} as u→ ∞ . Three cases are considered: the short time horizon, with T finite or growing much slower than u; the long time horizon, with T at or above the time of ruin, including infinity; and the intermediate time horizon, with T proportional to u but not growing as fast as in the long time horizon. As one of the examples, we derive an asymptotically optimal portfolio minimizing average losses in the case of two independent markets.
引用
收藏
页码:77 / 91
页数:14
相关论文
共 19 条
  • [1] Dieker T.(2005)Extremes of Gaussian processes over an infinite horizon Stoch. Process. Their Appl. 115 207-248
  • [2] Embrechts P.(1998)Living on the edge Risk 1 96-100
  • [3] Resnick S.(1999)Extreme value theory as a risk management tool N. Am. Actuar. J. 3 30-41
  • [4] Samorodnitsky G.(1999)Extremes of a certain class of Gaussian processes Stoch. Process. Their Appl. 83 257-271
  • [5] Embrechts P.(2004)On the ruin probability for physical fractional Brownian motion Stoch. Process. Their Appl. 113 315-332
  • [6] Resnick S.(2006)Extreme values of a portfolio of Gaussian processes and a trend Extremes 8 171-189
  • [7] Samorodnitsky G.(2004)On ruin problem for Gaussian stationary process Probab. Theory Appl. 49 171-178
  • [8] Hüsler J.(2005)Ruin probability at a given time for a model with liabilities of the fractional Brownian motion type: a partial differential equation approach Scand. Actuar. J. 4 285-308
  • [9] Piterbarg V.(2001)Large deviations of a storage process with fractional Brownian motion as input Extremes 4 147-164
  • [10] Hüsler J.(1996)Bounds and estimators of a basic constant in extreme value theory of Gaussian processes Stat. Sin. 6 245-257