Generalized spherical principal component analysis

被引:1
|
作者
Leyder, Sarah [1 ]
Raymaekers, Jakob [1 ,2 ]
Verdonck, Tim [1 ,3 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Maastricht Univ, Sch Business & Econ, QE Econometr Quantitat Econ, Tongersestr 53, NL-6211 LM Maastricht, Netherlands
[3] Univ Antwerp, IDLab, Imec, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Principal component analysis; Robustness; Influence functions; Efficiency; Breakdown value; SIGN COVARIANCE-MATRIX; PROJECTION-PURSUIT APPROACH; ESTIMATORS; ASYMPTOTICS; EIGENVALUES;
D O I
10.1007/s11222-024-10413-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Parameterized principal component analysis
    Gupta, Ajay
    Barbu, Adrian
    PATTERN RECOGNITION, 2018, 78 : 215 - 227
  • [42] Ensemble Principal Component Analysis
    Dorabiala, Olga
    Aravkin, Aleksandr Y.
    Kutz, J. Nathan
    IEEE ACCESS, 2024, 12 : 6663 - 6671
  • [44] Regularized Principal Component Analysis
    Yonathan AFLALO
    Ron KIMMEL
    Chinese Annals of Mathematics,Series B, 2017, (01) : 1 - 12
  • [45] Bayesian principal component analysis
    Nounou, MN
    Bakshi, BR
    Goel, PK
    Shen, XT
    JOURNAL OF CHEMOMETRICS, 2002, 16 (11) : 576 - 595
  • [46] A PRINCIPAL COMPONENT ANALYSIS FOR TREES
    Aydin, Burcu
    Pataki, Gabor
    Wang, Haonan
    Bullitt, Elizabeth
    Marron, J. S.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (04) : 1597 - 1615
  • [47] Principal component spectral analysis
    Guo, Hao
    Marfurt, Kurt J.
    Liu, Jianlei
    GEOPHYSICS, 2009, 74 (04) : P35 - P43
  • [48] Gene mutation of particle morphology through spherical harmonic-based principal component analysis
    Xiong, Wei
    Wang, Jianfeng
    POWDER TECHNOLOGY, 2021, 386 : 176 - 192
  • [49] Sparse generalized principal component analysis for large-scale applications beyond Gaussianity
    Zhang, Qiaoya
    She, Yiyuan
    STATISTICS AND ITS INTERFACE, 2016, 9 (04) : 521 - 533
  • [50] Modal Principal Component Analysis
    Sando, Keishi
    Hino, Hideitsu
    NEURAL COMPUTATION, 2020, 32 (10) : 1901 - 1935