Generalized spherical principal component analysis

被引:1
|
作者
Leyder, Sarah [1 ]
Raymaekers, Jakob [1 ,2 ]
Verdonck, Tim [1 ,3 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Maastricht Univ, Sch Business & Econ, QE Econometr Quantitat Econ, Tongersestr 53, NL-6211 LM Maastricht, Netherlands
[3] Univ Antwerp, IDLab, Imec, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Principal component analysis; Robustness; Influence functions; Efficiency; Breakdown value; SIGN COVARIANCE-MATRIX; PROJECTION-PURSUIT APPROACH; ESTIMATORS; ASYMPTOTICS; EIGENVALUES;
D O I
10.1007/s11222-024-10413-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [22] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [23] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [24] Generalized Spectral Dimensionality Reduction Based on Kernel Representations and Principal Component Analysis
    Ortega-Bustamante, Macarthur C.
    Hasperue, Waldo
    Peluffo-Ordonez, Diego H.
    Gonzalez-Vergara, Juan
    Marin-Gavino, Josue
    Velez-Falconi, Martin
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IV, 2021, 12952 : 512 - 523
  • [25] ROBUST PRINCIPAL COMPONENT ANALYSIS BASED ON TRIMMING AROUND AFFINE SUBSPACES
    Croux, C.
    Garcia-Escudero, L. A.
    Gordaliza, A.
    Ruwet, C.
    San Martin, R.
    STATISTICA SINICA, 2017, 27 (03) : 1437 - 1459
  • [26] Robust Principal Component Analysis: An IRLS Approach
    Polyak, Boris T.
    Khlebnikov, Mikhail V.
    IFAC PAPERSONLINE, 2017, 50 (01): : 2762 - 2767
  • [27] Pivotal-Aware Principal Component Analysis
    Li, Xuelong
    Li, Pei
    Zhang, Hongyuan
    Zhu, Kangjia
    Zhang, Rui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12201 - 12210
  • [28] Robust kernel principal component analysis and classification
    Michiel Debruyne
    Tim Verdonck
    Advances in Data Analysis and Classification, 2010, 4 : 151 - 167
  • [29] The Impact of Measurement Error on Principal Component Analysis
    Hellton, Kristoffer Herland
    Thoresen, Magne
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 1051 - 1063
  • [30] Robust Principal Component Analysis based on Purity
    Pan, Jinyan
    Cai, Yingqi
    Xie, Youwei
    Lin, Tingting
    Gao, Yunlong
    Cao, Chao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2017 - 2023