Generalized spherical principal component analysis

被引:3
作者
Leyder, Sarah [1 ]
Raymaekers, Jakob [1 ,2 ]
Verdonck, Tim [1 ,3 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Maastricht Univ, Sch Business & Econ, QE Econometr Quantitat Econ, Tongersestr 53, NL-6211 LM Maastricht, Netherlands
[3] Univ Antwerp, IDLab, Imec, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Principal component analysis; Robustness; Influence functions; Efficiency; Breakdown value; SIGN COVARIANCE-MATRIX; PROJECTION-PURSUIT APPROACH; ESTIMATORS; ASYMPTOTICS; EIGENVALUES;
D O I
10.1007/s11222-024-10413-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.
引用
收藏
页数:20
相关论文
共 42 条
[1]  
[Anonymous], 2002, Statistical Data Analysis Based on the L1 Norm and Related Methods, DOI [10.1007/978-3-0348-8201-9, DOI 10.1007/978-3-0348-8201-9]
[2]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[3]   Eigenvalues of large sample covariance matrices of spiked population models [J].
Baik, Jinho ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) :1382-1408
[4]   Projection pursuit in high dimensions [J].
Bickel, Peter J. ;
Kur, Gil ;
Nadler, Boaz .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (37) :9151-9156
[5]   BACON: blocked adaptive computationally efficient outlier nominators [J].
Billor, N ;
Hadi, AS ;
Velleman, PF .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 34 (03) :279-298
[6]   ASYMPTOTIC THEORY FOR ROBUST PRINCIPAL COMPONENTS [J].
BOENTE, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 21 (01) :67-78
[7]   The spatial sign covariance operator: Asymptotic results and applications [J].
Boente, Graciela ;
Rodriguez, Daniela ;
Sued, Mariela .
JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 :115-128
[8]   PARAFAC. Tutorial and applications [J].
Bro, R .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 38 (02) :149-171
[9]   ASYMPTOTICS FOR THE MINIMUM COVARIANCE DETERMINANT ESTIMATOR [J].
BUTLER, RW ;
DAVIES, PL ;
JHUN, M .
ANNALS OF STATISTICS, 1993, 21 (03) :1385-1400
[10]   Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-dimensional Gaussian distributions [J].
Cai, T. Tony ;
Liang, Tengyuan ;
Zhou, Harrison H. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 :161-172