Generalized spherical principal component analysis

被引:1
|
作者
Leyder, Sarah [1 ]
Raymaekers, Jakob [1 ,2 ]
Verdonck, Tim [1 ,3 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Maastricht Univ, Sch Business & Econ, QE Econometr Quantitat Econ, Tongersestr 53, NL-6211 LM Maastricht, Netherlands
[3] Univ Antwerp, IDLab, Imec, Middelheimlaan 1, B-2020 Antwerp, Belgium
关键词
Principal component analysis; Robustness; Influence functions; Efficiency; Breakdown value; SIGN COVARIANCE-MATRIX; PROJECTION-PURSUIT APPROACH; ESTIMATORS; ASYMPTOTICS; EIGENVALUES;
D O I
10.1007/s11222-024-10413-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Outliers contaminating data sets are a challenge to statistical estimators. Even a small fraction of outlying observations can heavily influence most classical statistical methods. In this paper we propose generalized spherical principal component analysis, a new robust version of principal component analysis that is based on the generalized spatial sign covariance matrix. Theoretical properties of the proposed method including influence functions, breakdown values and asymptotic efficiencies are derived. These theoretical results are complemented with an extensive simulation study and two real-data examples. We illustrate that generalized spherical principal component analysis can combine great robustness with solid efficiency properties, in addition to a low computational cost.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Principal component analysis: A generalized Gini approach
    Charpentier, Arthur
    Mussard, Stephane
    Ouraga, Tea
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 294 (01) : 236 - 249
  • [2] Generalized mean for robust principal component analysis
    Oh, Jiyong
    Kwak, Nojun
    PATTERN RECOGNITION, 2016, 54 : 116 - 127
  • [3] Adaptive Principal Component Analysis
    Li, Xiangyu
    Wang, Hua
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 486 - 494
  • [4] Robust principal component analysis via ES-algorithm
    Lim, Yaeji
    Park, Yeonjoo
    Oh, Hee-Seok
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (01) : 149 - 159
  • [5] Noise adjusted version of generalized principal component analysis
    Amini Omam, Mojtaba
    Torkamani-Azar, Farah
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2016, 24 (01) : 50 - 60
  • [6] Generalized probabilistic principal component analysis of correlated data
    Gu, Mengyang
    Shen, Weining
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [7] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [8] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [9] Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis
    van Ginkel, Joost R.
    Kroonenberg, Pieter M.
    JOURNAL OF CLASSIFICATION, 2014, 31 (02) : 242 - 269
  • [10] SubXPCA and a generalized feature partitioning approach to principal component analysis
    Kumar, Kadappagari Vijaya
    Negi, Atul
    PATTERN RECOGNITION, 2008, 41 (04) : 1398 - 1409