A Birkhoff–Lewis Type Theorem for the Nonlinear Wave Equation

被引:1
作者
Luca Biasco
Laura Di Gregorio
机构
[1] Università “Roma Tre”,Dipartimento di Matematica
[2] Universität Paderborn,IFIM Institut für Industriemathematik
来源
Archive for Rational Mechanics and Analysis | 2010年 / 196卷
关键词
Periodic Solution; Periodic Orbit; Hamiltonian System; Implicit Function Theorem; Nonlinear Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We give an extension of the celebrated Birkhoff–Lewis theorem to the nonlinear wave equation. Accordingly, we find infinitely many periodic orbits with longer and longer minimal periods accumulating at the origin, which is an elliptic equilibrium of the associated infinite-dimensional Hamiltonian system.
引用
收藏
页码:303 / 362
页数:59
相关论文
共 38 条
[1]  
Bambusi D.(2003)Birkhoff normal form for some nonlinear PDEs Comm. Math. Phys. 234 253-285
[2]  
Bambusi D.(2005)A Birkhoff–Lewis type theorem for some Hamiltonian PDEs SIAM J. Math. Anal. 37 83-102
[3]  
Berti M.(2006)Birkhoff normal form for partial differential equations with tame modulus Duke Math. J. 135 507-567
[4]  
Bambusi D.(2001)Families of periodic orbits for resonant PDE’s J. Nonlinear Sci. 11 69-87
[5]  
Grébert B.(2003)Periodic solutions of nonlinear wave equations with general nonlinearities Comm. Math. Phys. 243 315-328
[6]  
Bambusi D.(2006)Cantor families of periodic solutions of completely resonant wave equations Duke Math. J. 134 356-419
[7]  
Paleari S.(2008)Cantor families of periodic solutions for wave equations via a variational principle Adv. Math. 217 1671-1727
[8]  
Berti M.(2008)Cantor families of periodic solutions of wave equations with NoDEA 15 247-276
[9]  
Bolle P.(2006) nonlinearities Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 17 25-33
[10]  
Berti M.(2006)Periodic solutions of Birkhoff–Lewis type for the nonlinear wave equation SIAM J. Math. Anal. 38 1090-1125