Some definable properties of sets in non-valuational weakly o-minimal structures

被引:0
作者
Somayyeh Tari
机构
[1] Azarbaijan Shahid Madani University,Department of Mathematics
[2] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Archive for Mathematical Logic | 2017年 / 56卷
关键词
Weakly o-minimal structure; -strong cell decomposition; Definable compactness; Curve selection; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
Let M=(M,<,+,·,…)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}=(M,<,+,\cdot ,\ldots )$$\end{document} be a non-valuational weakly o-minimal expansion of a real closed field (M,<,+,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,<,+,\cdot )$$\end{document}. In this paper, we prove that M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} has a Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^r$$\end{document}-strong cell decomposition property, for each positive integer r, a best analogous result from Tanaka and Kawakami (Far East J Math Sci (FJMS) 25(3):417–431, 2007). We also show that curve selection property holds in non-valuational weakly o-minimal expansions of ordered groups. Finally, we extend the notion of definable compactness suitable for weakly o-minimal structures which was examined for definable sets (Peterzil and Steinhorn in J Lond Math Soc 295:769–786, 1999), and prove that a definable set is definably compact if and only if it is closed and bounded.
引用
收藏
页码:309 / 317
页数:8
相关论文
共 16 条
  • [1] Dickmann MA(1987)Elimination of quantifiers for ordered valuation rings J. Symb. Log. 52 116-128
  • [2] Knight JF(1986)Definable sets in ordered structures II Trans. Am. Math. Soc. 295 593-605
  • [3] Pillay A(2000)Weakly o-minimal structures and real closed fields Trans. Am. Math. Soc 352 5435-5483
  • [4] Steinhorn C(1999)Definable compactness and definable subgroups of o-minimal groups J. Lond. Math. Soc. 295 769-786
  • [5] Macpherson D(1986)Definable sets in ordered structures I Trans. Am. Math. Soc 295 565-592
  • [6] Marker D(2007) strong cell decomposition in non-valutional weakly o-minimal real closed fields Far East J. Math. Sci. (FJMS) 25 417-431
  • [7] Steinhorn C(2008)Weakly o-minimal non-valuational structures Ann. Pure Appl. Log. 154 139-162
  • [8] Peterzil Y(2009)On expansions of weakly o-minimal non-valuational structures by convex predicates Fund. Math. 202 147-159
  • [9] Steinhorn C(2013)On the strong cell decomposition property for weakly o-minimal structures Math. Log. Q. 59 379-493
  • [10] Pillay A(undefined)undefined undefined undefined undefined-undefined