Traveling wave solutions for density-dependent conformable fractional diffusion–reaction equation by the first integral method and the improved tan12φξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{tan}\left( {{\mathbf{\frac{1}{2}}}{\boldsymbol{\varphi }}\left({\boldsymbol{\upxi}} \right)} \right)$$\end{document}-expansion method

被引:2
作者
Hadi Rezazadeh
Jalil Manafian
Farid Samsami Khodadad
Fakhroddin Nazari
机构
[1] Amol University of Special Modern Technologies,Faculty of Engineering Technology
[2] Islamic Azad University,Young Researchers and Elite Club, Ilkhchi Branch
关键词
Improved ; -expansion Method; First integral method; Density-dependent conformable fractional diffusion–reaction equation;
D O I
10.1007/s11082-018-1388-1
中图分类号
学科分类号
摘要
In this paper, we propose the first integral method (FIM) and the improved tan12φξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{tan}\left( {\frac{1}{2}{\varphi }\left(\upxi \right)} \right)$$\end{document}-expansion method (ITEM) for solving the density-dependent conformable fractional diffusion–reaction equation (CFDRE) which is commonly applied in mathematical biology. We received many new exact soliton solutions for the density-dependent CFDRE which are expressed by exponential function, rational function and hyperbolic function forms. The results show that FIM and ITEM are powerful mathematical tools and efficient techniques for solving the fractional nonlinear partial differential equations.
引用
收藏
相关论文
共 84 条
[1]  
Abdeljawad T(2015)On conformable fractional calculus J. Comput. Appl. Math. 279 57-66
[2]  
Aminikhah H(2014)A novel effective approach for solving fractional nonlinear PDEs Int. Sch. Res. Not. 2014 1-9
[3]  
Malekzadeh N(2014)An efficient method for time-fractional coupled Schrödinger system Int. J. Partial Differ. Equ. 2014 1-12
[4]  
Rezazadeh H(2014)Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations J. Math. Model. 2 22-40
[5]  
Aminikhah H(2015)Exact solutions for the fractional differential equations by using the first integral method Nonlinear Eng. 4 15-22
[6]  
Sheikhani AR(2016)Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives Sci. Iran. B 23 1048-1054
[7]  
Rezazadeh H(2010)Application of the exp-function method for nonlinear differential-difference equations Appl. Math. Comput. 215 4049-4053
[8]  
Aminikhah H(2013)The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation Abstr. Appl. Anal. 2013 1-8
[9]  
RefahiSheikhani AH(2016)New exact solutions of Burgers’ type equations with conformable derivative Waves Random Complex Media 27 103-116
[10]  
Rezazadeh H(2016)The first integral method for Wu–Zhang system with conformable time-fractional derivative Calcolo 53 475-485