Stochastic control of a micro-grid using battery energy storage in solar-powered buildings

被引:0
作者
Ying Chen
Krystel K. Castillo-Villar
Bing Dong
机构
[1] University of Texas at San Antonio,Mechanical Engineering Department & Texas Sustainable Energy Research Institute
[2] School of Economics and Management,undefined
[3] Harbin Institute of Technology,undefined
来源
Annals of Operations Research | 2021年 / 303卷
关键词
Micro-grid; Control; Lookahead policies; Building;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an efficient data-driven building electricity management system that integrates a battery energy storage (BES) and photovoltaic panels to support decision-making capabilities. In this micro-grid (MG) system, solar panels and power grid supply the electricity to the building and the BES acts as a buffer to alleviate the uncertain effects of solar energy generation and the demands of the building. In this study, we formulate the problem as a Markov decision process and model the uncertainties in the MG system, using martingale model of forecast evolution method. To control the system, lookahead policies with deterministic/stochastic forecasts are implemented. In addition, wait-and-see, greedy and updated greedy policies are used to benchmark the performance of lookahead policies. Furthermore, by varying the charging/discharging rate, we obtain the different battery size Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {E_{s} } \right) $$\end{document} and transmission line power capacity (Pmax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (P_{max} ) $$\end{document} accordingly, and then we investigate how the different Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{s} $$\end{document} and Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{max} $$\end{document} affect the performance of control policies. The numerical experiments demonstrate that the lookahead policy with stochastic forecasts performs better than the lookahead policy with deterministic forecasts when the Es\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E_{s} $$\end{document} and Pmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{max} $$\end{document} are large enough, and the lookahead policies outperform the greedy and updated policies in all case studies.
引用
收藏
页码:197 / 216
页数:19
相关论文
共 82 条
  • [1] Amgai R(2014)An integrated lookahead control-based adaptive supervisory framework for autonomic power system applications International Journal of Electrical Power and Energy Systems 63 824-835
  • [2] Shi J(2003)A time-series framework for supply-chain inventory management Operations Research 51 210-227
  • [3] Abdelwahed S(2018)Structured storage policies for energy distribution networks IEEE Transactions on Smart Grid 9 483-496
  • [4] Aviv Y(2007)Support vector regression with genetic algorithms in forecasting tourism demand Tourism Management 28 215-226
  • [5] Bhattacharya A(1999)Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming Operations Research 47 38-53
  • [6] Kharoufeh JP(2000)Support vector machine classification and validation of cancer tissue samples using microarray expression data Bioinformatics 16 906-914
  • [7] Zeng B(2017)Myopic real-time decentralized charging management of plug-in hybrid electric vehicles Electric Power Systems Research 143 522-532
  • [8] Chen KY(1994)Modelling the evolution of demand forecasts with application to safety stock analysis in production/distribution systems IIE Transactions 26 17-30
  • [9] Wang CH(2001)Support vector machine approach for protein subcellular localization prediction Bioinformatics 17 721-728
  • [10] Chen VCP(2017)A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm Neurocomputing 221 24-31