Mathematical analysis of swine influenza epidemic model with optimal control

被引:0
作者
Mudassar Imran
Tufail Malik
Ali R Ansari
Adnan Khan
机构
[1] Gulf University for Science and Technology,Department of Mathematics and Natural Sciences
[2] Khalifa University,Department of Applied Mathematics and Sciences
[3] Lahore University of Management Sciences,Department of Mathematics
来源
Japan Journal of Industrial and Applied Mathematics | 2016年 / 33卷
关键词
Influenza; Reproduction number; Backward bifurcation; Uncertainty and sensitivity analysis; Optimal control; Statistical inference; 92B08; 49J15; 34C23;
D O I
暂无
中图分类号
学科分类号
摘要
A deterministic model is designed and used to analyze the transmission dynamics and the impact of antiviral drugs in controlling the spread of the 2009 swine influenza pandemic. In particular, the model considers the administration of the antiviral both as a preventive as well as a therapeutic agent. Rigorous analysis of the model reveals that its disease-free equilibrium is globally asymptotically stable under a condition involving the threshold quantity-reproduction number Rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_c$$\end{document}. The disease persists uniformly if Rc>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}_c>1$$\end{document} and the model has a unique endemic equilibrium under certain condition. The model undergoes backward bifurcation if the antiviral drugs are completely efficient. Uncertainty and sensitivity analysis is presented to identify and study the impact of critical model parameters on the reproduction number. A time dependent optimal treatment strategy is designed using Pontryagin’s maximum principle to minimize the treatment cost and the infected population. Finally the reproduction number is estimated for the influenza outbreak and model provides a reasonable fit to the observed swine (H1N1) pandemic data in Manitoba, Canada, in 2009.
引用
收藏
页码:269 / 296
页数:27
相关论文
共 50 条
  • [31] Analysis and Optimal Control of a Multistrain SEIR Epidemic Model with Saturated Incidence Rate and Treatment
    Bentaleb, Dounia
    Harroudi, Sanaa
    Amine, Saida
    Allali, Karam
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023, 31 (04) : 907 - 923
  • [32] Mathematical analysis and optimal control of a cholera epidemic in different human communities with individuals' migration
    Kokomo, Eric
    Danhree, Bongor
    Emvudu, Yves
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 54
  • [33] Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination
    J. M. Tchuenche
    S. A. Khamis
    F. B. Agusto
    S. C. Mpeshe
    Acta Biotheoretica, 2011, 59 : 1 - 28
  • [34] A Mathematical Model and Optimal Control Analysis for Scholar Drop Out
    Kourrad, Ahmed
    Alabkari, Amine
    Adnaoui, Khalid
    Lahmidi, Fouad
    Tabit, Youssef
    EL Adraoui, Abderrahim
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 14 - 14
  • [35] ANALYSIS OF A FRACTIONAL ORDER MATHEMATICAL MODEL FOR TUBERCULOSIS WITH OPTIMAL CONTROL
    Shi, Ruiqing
    Ren, Jianing
    Wang, Cuihong
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
  • [36] Mathematical analysis of a model for Chlamydia and Gonorrhea codynamics with optimal control
    Chukukere, E. C.
    Omame, A.
    Onyenegecha, C. P.
    Inyama, S. C.
    RESULTS IN PHYSICS, 2021, 27
  • [37] Optimal Control Analysis of a Mathematical Model for Recurrent Malaria Dynamics
    Olaniyi S.
    Ajala O.A.
    Abimbade S.F.
    Operations Research Forum, 4 (1)
  • [38] Analysis and optimal control of a Huanglongbing mathematical model with resistant vector
    Luo, Youquan
    Zhang, Fumin
    Liu, Yujiang
    Gao, Shujing
    INFECTIOUS DISEASE MODELLING, 2021, 6 : 782 - 804
  • [39] Optimal Control and Sensitivity Analysis of an Influenza Model with Treatment and Vaccination
    Tchuenche, J. M.
    Khamis, S. A.
    Agusto, F. B.
    Mpeshe, S. C.
    ACTA BIOTHEORETICA, 2011, 59 (01) : 1 - 28
  • [40] Stability analysis and optimal control of an epidemic model with awareness programs by media
    Misra, A. K.
    Sharma, Anupama
    Shukla, J. B.
    BIOSYSTEMS, 2015, 138 : 53 - 62