On reverse-order law of tensors and its application to additive results on Moore–Penrose inverse

被引:0
作者
Krushnachandra Panigrahy
Debasisha Mishra
机构
[1] National Institute of Technology Raipur,Department of Mathematics
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2020年 / 114卷
关键词
Tensor; Moore–Penrose inverse; Einstein product; Reverse-order law; Perturbation bound; Sub-proper splitting; 15A69; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
The equality (A∗NB)†=B†∗NA†\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {A}{*_N}\mathcal {B})^{\dagger }= \mathcal {B}^{\dagger }{*_N}\mathcal {A}^{\dagger }$$\end{document} for any two complex tensors A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} of arbitrary order, is called as the reverse-order law for the Moore–Penrose inverse of arbitrary order tensors via the Einstein product. Panigrahy et al. [Linear Multilinear Algebra; 68 (2020), 246-264.] obtained several necessary and sufficient conditions to hold the reverse-order law for the Moore–Penrose inverse of even-order tensors via the Einstein product, very recently. This notion is revisited here among other results. In this context, we present several new characterizations of the reverse-order law of arbitrary order tensors via the same product. More importantly, we illustrate a result on the Moore–Penrose inverse of a sum of two tensors as an application of the reverse-order law which leaves an open problem. We recall the definition of the Frobenius norm and the spectral norm to illustrate a result for finding the additive perturbation bounds of the Moore–Penrose inverse under the Frobenius norm. We conclude our paper with the introduction of the notion of sub-proper splitting for tensors which may help to find an iterative solution of a tensor multilinear system.
引用
收藏
相关论文
共 56 条
[1]  
Behera R(2017)Further results on generalized inverses of tensors via the Einstein product Linear Multilinear Algebra 65 1662-1682
[2]  
Mishra D(2005)Algorithms for numerical analysis in high dimensions SIAM J. Sci. Comput. 26 2133-2159
[3]  
Beylkin G(2002)Numerical operator calculus in higher dimensions Proc. Natl. Acad. Sci. USA 99 10246-10251
[4]  
Mohlenkamp MJ(2013)Solving multilinear systems via tensor inversion SIAM J. Matrix Anal. Appl. 34 542-570
[5]  
Beylkin G(2007)Tensor-product approximation to operators and functions in high dimensions J. Complex 23 697-714
[6]  
Mohlenkamp MJ(2005)Hierarchical kronecker tensor product approximations J. Numer. Math. 13 119-156
[7]  
Brazell M(2019)Tensor extreme learning design via generalized Moore-Penrose inverse and triangular type-2 fuzzy sets Neural Comput. Appl. 31 5641-5651
[8]  
Li N(2018)The Drazin inverse of an even-order tensor and its application to singular tensor equations Comput. Math. Appl. 75 3402-3413
[9]  
Navasca C(2017)Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product Front. Math. China 12 1319-1337
[10]  
Tamon C(2017)The generalized inverses of tensors and an application to linear models Comput. Math. Appl. 74 385-397