Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives

被引:0
作者
S. H. Saker
R. R. Mahmoud
K. R. Abdo
机构
[1] Galala University,Department of Mathematics, Faculty of Sciences
[2] Mansoura University,Department of Mathematics, Faculty of Science
[3] University of Technology and Applied Sciences-ALRustaq,Department of Mathematics, Faculty of Science
[4] Fayoum University,undefined
来源
Journal of Inequalities and Applications | / 2021卷
关键词
Hardy’s inequality; Higher-order derivatives; Time scales; 26A15; 26D10; 39A13; 34N05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish some necessary and sufficient conditions for the validity of a generalized dynamic Hardy-type inequality with higher-order derivatives with two different weighted functions on time scales. The corresponding continuous and discrete cases are captured when T=R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T=R}$\end{document} and T=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{T=N}$\end{document}, respectively. Finally, some applications to our main result are added to conclude some continuous results known in the literature and some other discrete results which are essentially new.
引用
收藏
相关论文
共 67 条
[1]  
Agarwal R.P.(2015)Dynamic Littlewood-type inequalities Proc. Am. Math. Soc. 143 667-677
[2]  
Bohner M.(1983)Weighted norm inequalities for certain integral operators SIAM J. Math. Anal. 14 834-844
[3]  
Saker S.H.(1982)Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions Stud. Math. 72 9-26
[4]  
Andersen K.F.(1961)Hardy’s inequalities and its extensions Pac. J. Math. 11 31-61
[5]  
Heinig H.P.(1987)Some elementary inequalities Q. J. Math. Oxf. Ser. (2) 38 401-425
[6]  
Anderson K.(2013)Minkowski and Beckenbach-Dresher inequalities and functionals on time scales J. Math. Inequal. 7 299-312
[7]  
Muckenhoupt B.(1978)Hardy inequality with mixed norms Can. Math. Bull. 21 405-408
[8]  
Beesack P.R.(1928)Note on series of positive terms J. Lond. Math. Soc. 3 49-51
[9]  
Bennett G.(1984)Generalized Hardy’s inequality Čas. Pěst. Mat. 109 194-203
[10]  
Bibi R.(2002)A Wirtinger type inequality and the spacing of the zeros of the Riemann zeta-function J. Number Theory 93 235-245