Bell-Type Inequalities from the Perspective of Non-Newtonian Calculus

被引:0
|
作者
Michał Piotr Piłat
机构
[1] Gdańsk University of Technology,Division of Theoretical Physics and Quantum Information, Faculty of Technical Physics and Applied Mathematics
来源
Foundations of Science | 2024年 / 29卷
关键词
Hidden variables; Bell’s inequality; Non-Diophantine arithmetic; Non-Newtonian calculus; Correspondence principle; Spin;
D O I
暂无
中图分类号
学科分类号
摘要
A class of quantum probabilities is reformulated in terms of non-Newtonian calculus and projective arithmetic. The model generalizes spin-1/2 singlet state probabilities discussed in Czachor (Acta Physica Polonica:139 70–83, 2021) to arbitrary spins s. For s→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\rightarrow \infty$$\end{document} the formalism reduces to ordinary arithmetic and calculus. Accordingly, the limit “non-Newtonian to Newtonian” becomes analogous to the classical limit of a quantum theory.
引用
收藏
页码:441 / 457
页数:16
相关论文
共 21 条
  • [1] Bell-Type Inequalities from the Perspective of Non-Newtonian Calculus
    Pilat, Michal Piotr
    FOUNDATIONS OF SCIENCE, 2024, 29 (02) : 441 - 457
  • [2] Synthetic approach to Bell's inequalities and a fundamental Bell-type theorem
    Rebilas, Krzysztof
    PHYSICS LETTERS A, 2024, 516
  • [3] On a Non-Newtonian Calculus of Variations
    Torres, Delfim F. M.
    AXIOMS, 2021, 10 (03)
  • [4] The Relevance of Bell-Type Inequalities for Mental Systems
    Atmanspacher, Harald
    Filk, Thomas
    QUANTUM INTERACTION, QI 2013, 2014, 8369 : 231 - 243
  • [5] Statistical convergence on non-Newtonian calculus
    Mehmet Çağri Yilmazer
    Emrah Yilmaz
    Sertac Goktas
    Mikail Et
    The Journal of Analysis, 2023, 31 : 2127 - 2137
  • [6] Molecular orientation entanglement and temporal Bell-type inequalities
    Milman, P.
    Keller, A.
    Charron, E.
    Atabek, O.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (03): : 383 - 392
  • [7] Statistical convergence on non-Newtonian calculus
    Yilmazer, Mehmet Cagri
    Yilmaz, Emrah
    Goktas, Sertac
    Et, Mikail
    JOURNAL OF ANALYSIS, 2023, 31 (03): : 2127 - 2137
  • [8] Bell-Type Inequalities for Bivariate Maps on Orthomodular Lattices
    Pykacz, Jaroslaw
    Valaskova, L'ubica
    Nanasiova, Ol'ga
    FOUNDATIONS OF PHYSICS, 2015, 45 (08) : 900 - 913
  • [9] Modifying an approximation process using non-Newtonian calculus
    Agratini, Octavian
    Karsli, Harun
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (02): : 291 - 301
  • [10] Applications of non-Newtonian calculus for classical spaces and Orlicz functions
    Kuldip Raj
    Charu Sharma
    Afrika Matematika, 2019, 30 : 297 - 309