Bayesian Semiparametric Structural Equation Models with Latent Variables

被引:0
|
作者
Mingan Yang
David B. Dunson
机构
[1] Saint Louis University,School of Public Health
[2] Duke University,Department of Statistical Science
来源
Psychometrika | 2010年 / 75卷
关键词
Dirichlet process; factor analysis; latent class; latent trait; mixture model; nonparametric Bayes; parameter expansion;
D O I
暂无
中图分类号
学科分类号
摘要
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.
引用
收藏
页码:675 / 693
页数:18
相关论文
共 50 条
  • [41] Bayesian Bivariate Semiparametric Spatial Models for Ozone and PM2.5 Emissions
    Wen Cheng
    Gurdiljot Singh Gill
    Frank Wen
    Jiao Zhou
    Environmental Modeling & Assessment, 2021, 26 : 237 - 249
  • [42] Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models
    Paganin, Sally
    Paciorek, Christopher J.
    Wehrhahn, Claudia
    Rodriguez, Abel
    Rabe-Hesketh, Sophia
    de Valpine, Perry
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (02) : 147 - 188
  • [43] Next Steps in Bayesian Structural Equation Models: Comments on, Variations of, and Extensions to Muthen and Asparouhov (2012)
    Rindskopf, David
    PSYCHOLOGICAL METHODS, 2012, 17 (03) : 336 - 339
  • [44] A Semiparametric Bayesian Approach for Estimating the Gene Expression Distribution
    Zou, Fei
    Huang, Hanwen
    Ibrahim, Joseph G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2010, 20 (02) : 267 - 280
  • [45] A Bayesian semiparametric factor analysis model for subtype identification
    Sun, Jiehuan
    Warren, Joshua L.
    Zhao, Hongyu
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2017, 16 (02) : 145 - 158
  • [46] Interpreting latent variables in factor models via convex optimization
    Armeen Taeb
    Venkat Chandrasekaran
    Mathematical Programming, 2018, 167 : 129 - 154
  • [47] A Systematic Evaluation and Comparison Between Exploratory Structural Equation Modeling and Bayesian Structural Equation Modeling
    Guo, Jiesi
    Marsh, Herbert W.
    Parker, Philip D.
    Dicke, Theresa
    Luedtke, Oliver
    Diallo, Thierno M. O.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (04) : 529 - 556
  • [48] Bayesian latent variable models for median regression on multiple outcomes
    Dunson, DB
    Watson, M
    Taylor, JA
    BIOMETRICS, 2003, 59 (02) : 296 - 304
  • [49] Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
    Dimitrakopoulos, Stefanos
    ECONOMICS LETTERS, 2017, 150 : 10 - 14
  • [50] Interpreting latent variables in factor models via convex optimization
    Taeb, Armeen
    Chandrasekaran, Venkat
    MATHEMATICAL PROGRAMMING, 2018, 167 (01) : 129 - 154