Bayesian Semiparametric Structural Equation Models with Latent Variables

被引:0
|
作者
Mingan Yang
David B. Dunson
机构
[1] Saint Louis University,School of Public Health
[2] Duke University,Department of Statistical Science
来源
Psychometrika | 2010年 / 75卷
关键词
Dirichlet process; factor analysis; latent class; latent trait; mixture model; nonparametric Bayes; parameter expansion;
D O I
暂无
中图分类号
学科分类号
摘要
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.
引用
收藏
页码:675 / 693
页数:18
相关论文
共 50 条
  • [21] BAYESIAN SEMIPARAMETRIC LONG MEMORY MODELS FOR DISCRETIZED EVENT DATA
    Chakraborty, Antik
    Ovaskainen, Otso
    Dunson, David B.
    ANNALS OF APPLIED STATISTICS, 2022, 16 (03) : 1380 - 1399
  • [22] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Yu, Han Jun
    Shen, Jun Shan
    Li, Zhao Nan
    Fang, Xiang Zhong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 748 - 760
  • [23] A polychoric instrumental variable (PIV) estimator for structural equation models with categorical variables
    Bollen, Kenneth A.
    Maydeu-Olivares, Albert
    PSYCHOMETRIKA, 2007, 72 (03) : 309 - 326
  • [24] A Polychoric Instrumental Variable (PIV) Estimator for Structural Equation Models with Categorical Variables
    Kenneth A. Bollen
    Albert Maydeu-Olivares
    Psychometrika, 2007, 72 : 309 - 326
  • [26] Identifiability of latent-variable and structural-equation models: from linear to nonlinear
    Hyvarinen, Aapo
    Khemakhem, Ilyes
    Monti, Ricardo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (01) : 1 - 33
  • [27] Generalized Linear Latent Variable Models with Flexible Distribution of Latent Variables
    Irincheeva, Irina
    Cantoni, Eva
    Genton, Marc G.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) : 663 - 680
  • [28] Identifiability of latent-variable and structural-equation models: from linear to nonlinear
    Aapo Hyvärinen
    Ilyes Khemakhem
    Ricardo Monti
    Annals of the Institute of Statistical Mathematics, 2024, 76 : 1 - 33
  • [29] Bayesian semiparametric joint modeling of longitudinal explanatory variables of mixed types and a binary outcome
    Lim, Woobeen
    Pennell, Michael L.
    Naughton, Michelle J.
    Paskett, Electra D.
    STATISTICS IN MEDICINE, 2022, 41 (01) : 17 - 36
  • [30] Semiparametric mixed-scale models using shared Bayesian forests
    Linero, Antonio R.
    Sinha, Debajyoti
    Lipsitz, Stuart R.
    BIOMETRICS, 2020, 76 (01) : 131 - 144