Bayesian Semiparametric Structural Equation Models with Latent Variables

被引:0
|
作者
Mingan Yang
David B. Dunson
机构
[1] Saint Louis University,School of Public Health
[2] Duke University,Department of Statistical Science
来源
Psychometrika | 2010年 / 75卷
关键词
Dirichlet process; factor analysis; latent class; latent trait; mixture model; nonparametric Bayes; parameter expansion;
D O I
暂无
中图分类号
学科分类号
摘要
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.
引用
收藏
页码:675 / 693
页数:18
相关论文
共 50 条
  • [1] Bayesian Semiparametric Structural Equation Models with Latent Variables
    Yang, Mingan
    Dunson, David B.
    PSYCHOMETRIKA, 2010, 75 (04) : 675 - 693
  • [2] A semiparametric Bayesian approach for structural equation models
    Song, Xin-Yuan
    Pan, Jun-Hao
    Kwok, Timothy
    Vandenput, Liesbeth
    Ohlsson, Claes
    Leung, Ping-Chung
    BIOMETRICAL JOURNAL, 2010, 52 (03) : 314 - 332
  • [3] Semiparametric Bayesian analysis of structural equation models with fixed covariates
    Lee, Sik-Yum
    Lu, Bin
    Song, Xin-Yuan
    STATISTICS IN MEDICINE, 2008, 27 (13) : 2341 - 2360
  • [4] A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference
    Schwartz, Scott L.
    Li, Fan
    Mealli, Fabrizia
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1331 - 1344
  • [5] Bayesian Semiparametric Joint Models for Functional Predictors
    Bigelow, Jamie L.
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (485) : 26 - 36
  • [6] Bayesian Estimation of Discrete Multivariate Latent Structure Models With Structural Zeros
    Manrique-Vallier, Daniel
    Reiter, Jerome P.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 1061 - 1079
  • [7] Semiparametric Bayesian analysis of selection models
    Lee, JY
    Berger, JO
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1397 - 1409
  • [8] Semiparametric Bayesian inference for mean-covariance regression models
    Han Jun Yu
    Jun Shan Shen
    Zhao Nan Li
    Xiang Zhong Fang
    Acta Mathematica Sinica, English Series, 2017, 33 : 748 - 760
  • [9] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    Acta Mathematica Sinica,English Series, 2017, (06) : 748 - 760
  • [10] Semiparametric Bayesian latent variable regression for skewed multivariate data
    Bhingare, Apurva
    Sinha, Debajyoti
    Pati, Debdeep
    Bandyopadhyay, Dipankar
    Lipsitz, Stuart R.
    BIOMETRICS, 2019, 75 (02) : 528 - 538