Electrical and Dielectric Properties of Non-magnetic Al3+ Substituted Ni–Zn Nano Ferrites for High Frequency Applications

被引:0
作者
B. Rajesh Babu
M. S. R. Prasad
K. V. Ramesh
Y. Purushotham
机构
[1] G.V.P. College of Engineering for Women,Department of Physics
[2] MVGR College of Engineering,Department of Physics
[3] GIS,Department of Physics
[4] GITAM University,undefined
[5] Centre for Materials for Electronics Technology (C-MET),undefined
来源
Journal of Inorganic and Organometallic Polymers and Materials | 2016年 / 26卷
关键词
Ni–Zn–Al ferrite; DC resistivity; Dielectric constant; Activation energy;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of Al substitution on electrical and dielectric parameters of Ni–Zn ferrite has been discussed in the present work. The phase identification, surface morphology was studied using X-ray diffractometer (XRD), scanning electron microscope (SEM), respectively. The XRD patterns confirm the single-phase formation of these ferrites. With Al3+, substitution lattice parameter decreases due to smaller Al3+ ions replacing Fe3+ ions. The average grain size obtained from SEM results are in the range of 390–27 nm. The DC resistivity was observed to increase with increasing Al3+ ions concentration due to the unavailability of Fe3+ ions. Dielectric constant (ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upvarepsilon ^{\prime }$$\end{document}) and dielectric loss tangent (tan δ) have been studied as a function of frequency (1 kHz–10 MHz) and temperature (50–300 °C). The observed results are explained on the basis of interfacial polarization as predicted by Maxwell and Wagner.
引用
收藏
页码:589 / 597
页数:8
相关论文
共 118 条
[1]  
Fontijn WFJPJ(1997)undefined Phys. Rev. B 56 5432-994
[2]  
van der Zaag PJ(2010)undefined IEEE Trans. Magn. 46 1894-3892
[3]  
Devillers MAC(2012)undefined Front. Mater. Sci. 6 128-388
[4]  
Brabers VAM(2006)undefined J. Optoelectron. Adv. Mater. 8 991-2197
[5]  
Metselaar R(1997)undefined J. Mater. Sci. 32 6049-undefined
[6]  
Harasawa T(2012)undefined J. Mol. Struct. 1024 77-undefined
[7]  
Zuzuki R(2009)undefined J. Phys. D Appl. Phys. 42 125006-undefined
[8]  
Shimizu O(2002)undefined J. Phys. D Appl. Phys. 35 3035-undefined
[9]  
Olcer S(2008)undefined Chin. J. Chem. Phys. 21 381-undefined
[10]  
Eleftheriou E(2013)undefined Powder Technol. 235 110-undefined