Nonparametric machine learning for mapping forest cover and exploring influential factors

被引:0
作者
Bao Liu
Lei Gao
Baoan Li
Raymundo Marcos-Martinez
Brett A. Bryan
机构
[1] China University of Petroleum (East China),College of Information and Control Engineering
[2] CSIRO,School of Business
[3] Shandong Normal University,Centre for Integrative Ecology
[4] CSIRO,undefined
[5] Deakin University,undefined
来源
Landscape Ecology | 2020年 / 35卷
关键词
Machine learning; Support vector regression; Artificial neural network; Random forest; Gradient boosted regression tree; Forest cover;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1683 / 1699
页数:16
相关论文
共 321 条
  • [1] Andam KS(2008)Measuring the effectiveness of protected area networks in reducing deforestation Proc Natl Acad Sci 105 16089-16094
  • [2] Ferraro PJ(2007)Spatial and temporal dynamics of land use pattern in Turkey: a case study in Inegol Landsc Urban Plan 81 316-327
  • [3] Pfaff A(2012)Random search for hyper-parameter optimization J Mach Learn Res 13 281-305
  • [4] Sanchez-Azofeifa GA(1996)Bagging predictors Mach Learn 24 123-140
  • [5] Robalino JA(2001)Random forests Mach Learn 45 5-32
  • [6] Baskent EZ(1984)Classification and regression trees, Wadsworth Int Group 37 237-251
  • [7] Kadiogullari AI(2010)Support vector machines for classification and regression Analyst 135 230-267
  • [8] Bergstra J(2013)High-performance computing tools for the integrated assessment and modelling of social–ecological systems Environ Modell Softw 39 295-303
  • [9] Bengio Y(2011)LIBSVM: a library for support vector machines ACM Trans Intell Syst Technol (TIST) 2 1-27
  • [10] Breiman L(2001)Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data Int J Remote Sens 22 2279-2310