On the problem of starting points for iterative methods

被引:0
作者
Ştefan Măruşter
Laura Măruşter
机构
[1] West University of Timisoara,
[2] University of Groningen,undefined
来源
Numerical Algorithms | 2019年 / 81卷
关键词
Iterative methods; Starting point; Numerical experiments;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an algorithm to find a starting point for iterative methods. Numerical experiments show empirically that the algorithm provides starting points for different iterative methods (like Newton method and its variants) with low computational cost.
引用
收藏
页码:1149 / 1155
页数:6
相关论文
共 19 条
[1]  
Maruster S(1977)The solution by iteration of nonlinear equations in Hilbert spaces Proc. Amer. Math. Soc. 63 69-73
[2]  
Baker Kearfott R(1987)Abstract generalized bisection and cost bound Math. Comput. 49 187-202
[3]  
Adler A(1983)On the bisection method for triangles Math. Comput. 40 571-574
[4]  
Xu Z-B(1996)A cell exclusion algorithm for determining all the solutions of a nonliniar system of equations Appl. Math. and Comput. 80 181-208
[5]  
Zhang J-S(1983)An interval Newton method Appl. Math. Comput. 12 89-98
[6]  
Wang W(1980)Simplicial and continuation methods for approximating fixed points and solutions to systems of equations SIAM Rev. 22 28-85
[7]  
Hansen ER(1998)Solutions to systems of nonlinear equations via a genetic algorithm Eng. Appl. Artif. Intel. 11 369-376
[8]  
Greenberg RI(1975)An adaptive continuation process for solving systems of nonlinear equations Polish Acad. Sci. Banach Center Publ. 3 129-14
[9]  
Allgower EL(2009)Estimating the radius of an attraction ball Appl. Math. Lett. 22 712-714
[10]  
Georg K(2015)On the local convergence of a third order family of iterative processes Algorithms 8 1121-1128