Testing the nullspace property using semidefinite programming

被引:0
|
作者
Alexandre d’Aspremont
Laurent El Ghaoui
机构
[1] Princeton University,ORFE Department
[2] U.C. Berkeley,EECS Department
来源
Mathematical Programming | 2011年 / 127卷
关键词
Compressed sensing; Nullspace property; Semidefinite programming; Restricted isometry constant; 90C22; 94A12; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Recent results in compressed sensing show that, under certain conditions, the sparsest solution to an underdetermined set of linear equations can be recovered by solving a linear program. These results either rely on computing sparse eigenvalues of the design matrix or on properties of its nullspace. So far, no tractable algorithm is known to test these conditions and most current results rely on asymptotic properties of random matrices. Given a matrix A, we use semidefinite relaxation techniques to test the nullspace property on A and show on some numerical examples that these relaxation bounds can prove perfect recovery of sparse solutions with relatively high cardinality.
引用
收藏
页码:123 / 144
页数:21
相关论文
共 50 条
  • [41] The algebraic degree of semidefinite programming
    Jiawang Nie
    Kristian Ranestad
    Bernd Sturmfels
    Mathematical Programming, 2010, 122 : 379 - 405
  • [42] Symmetricity of the solution of semidefinite programming
    Kanno, Y.
    Ohsaki, M.
    Katoh, N.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2002, 24 (03) : 225 - 232
  • [43] DUALITY FORMULATIONS IN SEMIDEFINITE PROGRAMMING
    Zhang, Qinghong
    Chen, Gang
    Zhang, Ting
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2010, 6 (04) : 881 - 893
  • [44] Semidefinite programming in combinatorial optimization
    Goemans, MX
    MATHEMATICAL PROGRAMMING, 1997, 79 (1-3) : 143 - 161
  • [45] Using a factored dual in augmented Lagrangian methods for semidefinite programming
    De Santis, Marianna
    Rendl, Franz
    Wiegele, Angelika
    OPERATIONS RESEARCH LETTERS, 2018, 46 (05) : 523 - 528
  • [46] Bounds for codes by semidefinite programming
    O. R. Musin
    Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 134 - 149
  • [47] The volumetric barrier for semidefinite programming
    Anstreicher, KM
    MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (03) : 365 - 380
  • [48] A robust algorithm for semidefinite programming
    Doan, Xuan Vinh
    Kruk, Serge
    Wolkowicz, Henry
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5) : 667 - 693
  • [49] Semidefinite programming in combinatorial optimization
    Michel X. Goemans
    Mathematical Programming, 1997, 79 : 143 - 161
  • [50] Motion Parameter Estimation for Mobile Sources Using Semidefinite Programming
    Wu, Xiaoping
    Qi, Hengnian
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (02) : 1066 - 1080