Testing the nullspace property using semidefinite programming

被引:0
|
作者
Alexandre d’Aspremont
Laurent El Ghaoui
机构
[1] Princeton University,ORFE Department
[2] U.C. Berkeley,EECS Department
来源
Mathematical Programming | 2011年 / 127卷
关键词
Compressed sensing; Nullspace property; Semidefinite programming; Restricted isometry constant; 90C22; 94A12; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Recent results in compressed sensing show that, under certain conditions, the sparsest solution to an underdetermined set of linear equations can be recovered by solving a linear program. These results either rely on computing sparse eigenvalues of the design matrix or on properties of its nullspace. So far, no tractable algorithm is known to test these conditions and most current results rely on asymptotic properties of random matrices. Given a matrix A, we use semidefinite relaxation techniques to test the nullspace property on A and show on some numerical examples that these relaxation bounds can prove perfect recovery of sparse solutions with relatively high cardinality.
引用
收藏
页码:123 / 144
页数:21
相关论文
共 50 条
  • [31] Semidefinite programming and matrix scaling over the semidefinite cone
    Kalantari, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 375 : 221 - 243
  • [32] Nullspace Property for Optimality of Minimum Frame Angle Under Invertible Linear Operators
    Sasmal, Pradip
    Theeda, Prasad
    Jampana, Phanindra Varma
    Sastry, Challa S.
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1928 - 1932
  • [33] SEMIDEFINITE PROGRAMMING FOR THE NEAREST HURWITZ SEMIDEFINITE MATRIX PROBLEM
    Al-Homidan, Suliman
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (01) : 1 - 10
  • [34] Array pattern synthesis using semidefinite programming and a bisection method
    Lee, Jong-Ho
    Choi, Jeongsik
    Lee, Woong-Hee
    Song, Jiho
    ETRI JOURNAL, 2019, 41 (05) : 619 - 625
  • [35] THE NETWORK NULLSPACE PROPERTY FOR COMPRESSED SENSING OVER NETWORKS
    Jung, Alexander
    Heimowitz, Ayelet
    Eldar, Yonina C.
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 644 - 648
  • [36] Solving Hankel matrix approximation problem using semidefinite programming
    Al-Homidan, Suliman
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (02) : 304 - 314
  • [37] Converging outer approximations to global attractors using semidefinite programming
    Schlosser, Corbinian
    Korda, Milan
    AUTOMATICA, 2021, 134
  • [38] Source Localization Using a Maximum Likelihood/Semidefinite Programming Hybrid
    Ibeawuchi, Stella-Rita C.
    Dasgupta, Soura
    Meng, Cheng
    Ding, Zhi
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY, 2008, : 585 - +
  • [39] An optimal approach for the critical node problem using semidefinite programming
    Jiang, Cheng
    Liu, Zhonghua
    Wang, Juyun
    Yu, Hua
    Guo, Xiaoling
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 471 : 315 - 324
  • [40] Embedding methods for semidefinite programming
    Zhang, Qinghong
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (03) : 461 - 482