Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets

被引:0
作者
Antoine Ayache
Yimin Xiao
机构
[1] U.M.R CNRS 8524,
[2] Laboratoire Paul Painleve,undefined
[3] Bat.M2,undefined
[4] Universite Lille 1,undefined
[5] 59 655 Villeneuve d’Ascq Cedex and U.M.R CNRS 8020 CLAREE,undefined
[6] IAE de Lille 104,undefined
[7] Avenue du Peuple Belge,undefined
[8] 59043 Lille Cedex,undefined
[9] Department of Statistics and Probability,undefined
[10] A-413 Wells Hall,undefined
[11] Michigan State University,undefined
[12] East Lansing,undefined
[13] MI 48823,undefined
来源
Journal of Fourier Analysis and Applications | 2005年 / 11卷
关键词
Differential Equation; Partial Differential Equation; Fourier Analysis; Asymptotic Property; Hausdorff Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Let BH = {BH(t ), t ∈ ℝN} be an (N, d)-fractional Brownian sheet with index H = (H1, . . . , HN) ∈ (0, 1)N. The uniform and local asymptotic properties of BH are proved by using wavelet methods. The Hausdorff and packing dimensions of the range BH ([0, 1]N), the graph Gr BH ([0, 1]N) and the level set are determined.
引用
收藏
页码:407 / 439
页数:32
相关论文
empty
未找到相关数据