A procedure for specific charge and cycling performance measurements on LiMn2O4 spinels for lithium-ion batteries

被引:0
|
作者
M. Lanz
C. Kormann
P. Novák
机构
[1] Paul Scherrer Institute,Laboratory for Electrochemistry
[2] BASF AG,undefined
[3] Mettler-Toledo GmbH,undefined
来源
Journal of Solid State Electrochemistry | 2003年 / 7卷
关键词
Cycle life; Elevated-temperature performance; LiMn; O; spinel; Lithium-ion battery; Specific charge;
D O I
暂无
中图分类号
学科分类号
摘要
A procedure for determining the specific charge and the cycling performance of lithium manganese oxide spinels (LiMn2O4) for rechargeable lithium-ion batteries has been developed. Measurements were made in two-electrode electrochemical test cells with an internal arrangement resembling that of coin cells, with either metallic lithium or a graphite composite counter electrode. Applying the procedure to various LiMn2O4 spinels with different degrees of manganese substitution, Li1+yMn2−yO4 (0.05≤y≤0.1), and different surface coatings, we observed an increase of the spinel cycle life with an increasing degree of manganese substitution, at the expense of a small decrease of the specific charge. The influence of the type of counter electrode on the specific charge measurements was examined. Furthermore, we investigated the influence of the temperature, 25 °C vs. 55 °C, on the specific charge and the cycling performance of the spinels with different degrees of manganese substitution. A survey of the combined effects of the counter electrode and the temperature on the specific charge measurements is given.
引用
收藏
页码:658 / 664
页数:6
相关论文
共 50 条
  • [1] A procedure for specific charge and cycling performance measurements on LiMn2O4 spinels for lithium-ion batteries
    Lanz, M
    Kormann, C
    Novák, P
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) : 658 - 664
  • [2] Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries
    Wu, HM
    Tu, JP
    Yuan, YF
    Li, Y
    Zhang, WK
    Huang, H
    PHYSICA B-CONDENSED MATTER, 2005, 369 (1-4) : 221 - 226
  • [3] LiMn2O4 for 4 V lithium-ion batteries
    Manev, V
    Banov, B
    Momchilov, A
    Nassalevskaa, A
    JOURNAL OF POWER SOURCES, 1995, 57 (1-2) : 99 - 103
  • [4] LiMn2O4 for 4 V lithium-ion batteries
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Power Sources, 1-2 (99-103):
  • [5] Lithium-ion batteries based on overlithiated LiMn2O4
    Peramunage, D
    Abraham, KM
    Willstaedt, EB
    THIRTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 1998, : 107 - 112
  • [6] Investigation on the temperature tolerance of LiMn2O4 in lithium-ion batteries
    Li, Shiyou
    Han, Yamin
    Geng, Tongtong
    Wang, Peng
    Li, Wenbo
    Yang, Li
    Li, Zhaojuan
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (22) : 9540 - 9545
  • [7] Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries
    Guan, Dongsheng
    Wang, Ying
    IONICS, 2013, 19 (01) : 1 - 8
  • [8] Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries
    Dongsheng Guan
    Ying Wang
    Ionics, 2013, 19 : 1 - 8
  • [9] LiMn2O4 - MXene nanocomposite cathode for high-performance lithium-ion batteries
    Ali, Muntaha Elsadig Siddig
    Tariq, Hanan Abdurehman
    Moossa, Buzaina
    Qureshi, Zawar Alam
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Shakoor, R. A.
    ENERGY REPORTS, 2024, 11 : 2401 - 2414
  • [10] The role of oxygen vacancies in the performance of LiMn2O4 spinel cathodes for lithium-ion batteries
    Wang, Jing
    Xing, Haiyang
    Hou, Wenqiang
    Xu, Youlong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (28) : 18903 - 18914