Maximal Estimates for the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann Problem on Non-pseudoconvex Domains

被引:0
作者
Phillip S. Harrington [1 ]
Andrew Raich [1 ]
机构
[1] University of Arkansas,
关键词
Maximal estimates; -Neumann operator; -convexity; 32W05; 35N15; 32F17;
D O I
10.1007/s12220-024-01684-9
中图分类号
学科分类号
摘要
It is well known that elliptic estimates fail for the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann problem. Instead, the best that one can hope for is that derivatives in every direction but one can be estimated by the associated Dirichlet form, and when this happens, we say that the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann problem satisfies maximal estimates. In the pseudoconvex case, a necessary and sufficient geometric condition for maximal estimates has been derived by Derridj (for (0, 1)-forms) and Ben Moussa (for (0, q)-forms when q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document}). In this paper, we explore necessary conditions and sufficient conditions for maximal estimates in the non-pseudoconvex case. We also discuss when the necessary conditions and sufficient conditions agree and provide examples. Our results subsume the earlier known results from the pseudoconvex case.
引用
收藏
相关论文
共 30 条
[1]  
Ahn H(2006)Non-subelliptic estimates for the tangential Cauchy–Riemann system Manuscr. Math. 121 461-479
[2]  
Baracco L(1962)Théorème de finitude pour la cohomologie des espaces complexes Bull. Soc. Math. Fr. 90 193-259
[3]  
Zampieri G(2000)Analyticité semi-globale pour le Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 51-100
[4]  
Andreotti A(2006)-Neumann dans des domaines pseudoconvexes Math. Ann. 334 143-152
[5]  
Grauert H(2020)Local solvability of the Proc. Am. Math. Soc. 148 751-764
[6]  
Ben Moussa B(2021)-equation with boundary regularity on weakly J. Geom. Anal. 31 9639-9676
[7]  
Brinkschulte J(1978)-convex domains J. Differential Geom. 13 559-576
[8]  
Çelik M(1980)Convex domains, Hankel operators, and maximal estimates Comment. Math. Helv. 55 413-426
[9]  
Şahutoğlu S(1957)A modified Morrey–Kohn–Hörmander identity and applications to the Rend. Sem. Mat. Univ. Padova 27 284-305
[10]  
Straube EJ(1988)-problem Am. J. Math. 110 577-593