Eigenvalues of the negative Laplacian for simply connected bounded domains

被引:0
|
作者
E. M. E. Zayed
机构
[1] Zagazig University,Mathematics Department, Faculty of Science
关键词
Inverse problem; Arbitrary bounded domains; Negative Laplacian; Eigenvalues; Spectral function; 35K; 35P; O175.2;
D O I
10.1007/BF02560014
中图分类号
学科分类号
摘要
This paper is devoted to asymptotic formulae for functions related with the spectrum of the negative Laplacian in two and three dimensional bounded simply connected domains with impedance boundary conditions, where the impedances are assumed to be discontinuous functions. Moreover, asymptotic expressions for the difference of eigenvalues related to the impedance problems with different impedances are derived. Further results may be obtained.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [1] Eigenvalues of the Negative Laplacian for Simply Connected Bounded Domains
    E.M.E.Zayed (Mathematics Department
    Acta Mathematica Sinica,English Series, 1997, (03) : 337 - 346
  • [3] Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains
    A. Girouard
    R. S. Laugesen
    B. A. Siudeja
    Archive for Rational Mechanics and Analysis, 2016, 219 : 903 - 936
  • [4] Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains
    Girouard, A.
    Laugesen, R. S.
    Siudeja, B. A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (02) : 903 - 936
  • [5] On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains with some numerics
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Jauberteau, F.
    Léna, C.
    Asymptotic Analysis, 2021, 121 (01) : 35 - 57
  • [6] On the multiplicity of the second eigenvalue of the Laplacian in non simply connected domains - with some numerics -
    Helffer, B.
    Hoffmann-Ostenhof, T.
    Jauberteau, F.
    Lena, C.
    ASYMPTOTIC ANALYSIS, 2020, 121 (01) : 35 - 57
  • [7] On Laplacian eigenvalues of connected graphs
    Igor Ž. Milovanović
    Emina I. Milovanović
    Edin Glogić
    Czechoslovak Mathematical Journal, 2015, 65 : 529 - 535
  • [8] On Laplacian eigenvalues of connected graphs
    Milovanovic, Igor Z.
    Milovanovic, Emina I.
    Glogic, Edin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 529 - 535
  • [9] Fractional Laplacian in bounded domains
    Zoia, A.
    Rosso, A.
    Kardar, M.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [10] An Inequality on Laplacian Eigenvalues of Connected Graphs
    Li, Rao
    ARS COMBINATORIA, 2012, 105 : 361 - 368