Initial Value Problems for Wave Equations on Manifolds

被引:0
作者
Christian Bär
Roger Tagne Wafo
机构
[1] Universität Potsdam,Institut für Mathematik
[2] University of Douala,Faculty of Science, Department of Mathematics and Computer Science
来源
Mathematical Physics, Analysis and Geometry | 2015年 / 18卷
关键词
Wave equation; Globally hyperbolic Lorentz manifold; Cauchy problem; Goursat problem; Finite energy sections; 35L05; 35L15; 58J45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the global theory of linear wave equations for sections of vector bundles over globally hyperbolic Lorentz manifolds. We introduce spaces of finite energy sections and show well-posedness of the Cauchy problem in those spaces. These spaces depend in general on the choice of a time function but it turns out that certain spaces of finite energy solutions are independent of this choice and hence invariantly defined. We also show existence and uniqueness of solutions for the Goursat problem where one prescribes initial data on a characteristic partial Cauchy hypersurface. This extends classical results due to Hörmander.
引用
收藏
相关论文
共 21 条
[1]  
Baum H(1996)Normally hyperbolic operators, the Huygens property and conformal geometry Ann. Glob. Ana. Geom. 14 315-371
[2]  
Kath I(2005)Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes Commun. Math. Phys. 257 43-50
[3]  
Bernal A(2006)Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions Lett. Math. Phys. 77 183-197
[4]  
Sánchez M(2007)Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’, Class. Quant. Grav. 24 745-749
[5]  
Bernal A(1982)Problème de Cauchy sur un conoïde caractéristique pour des équations quasi-linéaires Ann. Mat. Pura. Appl. 129 13-41
[6]  
Sánchez M(2011)An existence theorem for the Cauchy problem on a characteristic cone for the Einstein equations Contemp. Math. 554 73-81
[7]  
Bernal A(2012)The many ways of the characteristic Cauchy problem Class. Quant. Grav. 29 145006, 27-596
[8]  
Sánchez M(2009)Black hole formation from a complete regular past Commun. Math. Phys. 289 579-600
[9]  
Cagnac F(1996)A proof of the trace theorem of Sobolev spaces on Lipschitz domains Proc. Amer. Math. Soc. 124 591-376
[10]  
Choquet-Bruhat Y(2002)Solutions $C^{\infty }$C∞ d’une classe de problèmes de Cauchy quasi-linéaires hyperboliques du second ordre sur un conoïde caractéristique Ann. Fac. Sci. Toulouse. Math. 11 351-277