A local version of Hardy spaces associated with operators on metric spaces

被引:0
作者
RuMing Gong
Ji Li
LiXin Yan
机构
[1] Guangzhou University,School of Mathematics and Information Science
[2] Guangzhou University,Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes
[3] Sun Yat-sen University,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
local Hardy space; non-negative self-adjoint operator; semigroups; local (1, ; )-atoms; Moser type local boundedness condition; space of homogeneous type; 42B30; 42B35; 42B25; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d, µ) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure µ. Let L be a second order self-adjoint positive operator on L2(X). Assume that the semigroup e−tL generated by −L satisfies the Gaussian upper bounds on L2(X). In this article we study a local version of Hardy space hL1 (X) associated with L in terms of the area function characterization, and prove their atomic characters. Furthermore, we introduce a Moser type local boundedness condition for L, and then we apply this condition to show that the space hL1(X) can be characterized in terms of the Littlewood-Paley function. Finally, a broad class of applications of these results is described.
引用
收藏
页码:315 / 330
页数:15
相关论文
共 29 条
[1]  
Arendt W.(1997)Gaussian estimates for second order elliptic operators with boundary conditions J Operator Theory 38 87-130
[2]  
ter Elst A. F. M.(2007)Maximal inequalities and Riesz transform estimates on Ann Inst Fourier 57 1975-2013
[3]  
Auscher P.(2008) spaces for Schrödinger operators with non-negative potentials J Geom Anal 18 192-248
[4]  
Ben Ali B.(2003)Hardy spaces of differential forms on Riemannian manifolds J Funct Anal 201 148-184
[5]  
Auscher P.(1990)Hardy spaces and divergence operators on strongly Lipschitz domain of ℝ Colloq Math LX/LXI 601-628
[6]  
McIntosh A.(2008)A Proc Lond Math Soc 96 507-544
[7]  
Russ E.(2005)( J Amer Math Soc 18 943-973
[8]  
Auscher P.(1999)) theorem with remarks on analytic capacity and the Cauchy integral Rev Mat Iberoamericana 15 279-296
[9]  
Russ E.(1979)Gaussian heat kernel upper bounds via Phragmén-Lindelöf theorem Duke Math J 46 27-42
[10]  
Christ M.(2011)Duality of Hardy and BMO spaces associated with operators with heat kernel bounds Mem Amer Math Soc 214 1007-116