Transcendental Hodge algebra

被引:0
作者
Misha Verbitsky
机构
[1] National Research University HSE,Laboratory of Algebraic Geometry, Department of Mathematics
[2] Université Libre de Bruxelles,undefined
来源
Selecta Mathematica | 2017年 / 23卷
关键词
Hyperkähler manifold; Hodge structure; Transcendental Hodge lattice; Birational invariance; 53C26;
D O I
暂无
中图分类号
学科分类号
摘要
The transcendental Hodge lattice of a projective manifold M is the smallest Hodge substructure in pth cohomology which contains all holomorphic p-forms. We prove that the direct sum of all transcendental Hodge lattices has a natural algebraic structure, and compute this algebra explicitly for a hyperkähler manifold. As an application, we obtain a theorem about dimension of a compact torus T admitting a holomorphic symplectic embedding to a hyperkähler manifold M. If M is generic in a d-dimensional family of deformations, then dimT≥2[(d+1)/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim T\ge 2^{[(d+1)/2]}$$\end{document}.
引用
收藏
页码:2203 / 2218
页数:15
相关论文
共 15 条
  • [1] Beauville A(1983)Varietes Kähleriennes dont la première classe de Chern est nulle J. Differ. Geom. 18 755-782
  • [2] Bogomolov FA(1974)On the decomposition of Kähler manifolds with trivial canonical class Math. USSR-Sb. 22 580-583
  • [3] Soldatenkov A(2012)Subvarieties of hypercomplex manifolds with holonomy in SL(n, H) J. Geom. Phys. 62 2234-2240
  • [4] Verbitsky M(2015)-symplectic structures and absolutely trianalytic subvarieties in hyperkähler manifolds J. Geom. Phys. 92 147-156
  • [5] Soldatenkov A(1996)Cohomology of compact hyperkähler manifolds and its applications GAFA 6 601-612
  • [6] Verbitsky M(1996)Hyperkähler and holomorphic symplectic geometry I J. Algebr. Geom. 5 401-415
  • [7] Verbitsky M(1998)Trianalytic subvarieties of the Hilbert scheme of points on a K3 surface GAFA 8 732-782
  • [8] Verbitsky M(2004)Wirtinger numbers and holomorphic symplectic immersions Sel. Math. (N.S.) 10 551-559
  • [9] Verbitsky M(2013)A global Torelli theorem for hyperkähler manifolds Duke Math. J. 162 2929-2986
  • [10] Verbitsky M(1978)On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I Commun. Pure Appl. Math. 31 339-411