Pseudo-contractibility and pseudo-amenability of semigroup algebras

被引:0
作者
M. Essmaili
M. Rostami
A. R. Medghalchi
机构
[1] Tarbiat Moallem University,Faculty of Mathematical and Computer Science
[2] Amirkabir University of Technology,Faculty of Mathematical and Computer Science
来源
Archiv der Mathematik | 2011年 / 97卷
关键词
Primary 43A20; 20M18; Secondary 16E40; Pseudo-contractibility; Pseudo-amenability; Semigroup algebras; Inverse semigroup; Brandt semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we characterize pseudo-contractibility of ℓ1(S), where S is a uniformly locally finite inverse semigroup. As a consequence, we show that for a Brandt semigroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S={\mathcal{M}}^{0}(G,I),}$$\end{document} the semigroup algebra ℓ1(S) is pseudo-contractible if and only if G and I are finite. Moreover, we study the notions of pseudo-amenability and pseudo-contractibility of a semigroup algebra ℓ1(S) in terms of the amenability of S.
引用
收藏
页码:167 / 177
页数:10
相关论文
共 29 条
[1]  
Alaghmandan M.(2010)On Arch. Math (Basel) 95 373-379
[2]  
Nasr-Isfahani R.(2009) -contractibility of the Lebesgue-Fourier algebra of a locally compact group J. Func. Anal 256 3158-3191
[3]  
Nemati M.(2010)Approximate and pseudo-amenability of various classes of Banach algebras Memoirs Amer. Math. Soc. 205 1-165
[4]  
Choi Y.(1978)Banach algebras on semigroups and their compactifications Proc. Royal Soc. Edinburgh, Section A 80 309-321
[5]  
Ghahramani F.(1990)Amenability of inverse semigroup and their semigroup algebras Math. Scandinavica 66 141-146
[6]  
Zhang Y.(2004)Amenability for discrete convolution semigroup algebras Monatsh. Math. 142 193-203
[7]  
Dales H.G.(2011)Double centralizer algebras of certain Banach algebras Semigroup Forum 82 478-484
[8]  
Lau A.T.(2007)Pseudo-amenability of certain semigroup algebars Indiana Univ. Math. J. 56 909-930
[9]  
Strauss D.(2007)Approximate and pseudo-amenability of the Fourier algebra Math. Proc. Cambridge Philos. Soc. 142 111-123
[10]  
Duncan J.(2009)Pseudo-amenable and pseudo-contractible Banach algebras Studia Math. 193 53-78