Stability of Standing Waves for the Nonlinear Fractional Schrödinger Equation

被引:1
作者
Jian Zhang
Shihui Zhu
机构
[1] Sichuan Normal University,Department of Mathematics
[2] Georgia Institute of Technology,School of Mathematics
[3] China West Normal University,College of Mathematics and Information
来源
Journal of Dynamics and Differential Equations | 2017年 / 29卷
关键词
Nonlinear fractional Schrödinger equation; Profile decomposition; Standing wave; Orbital stability;
D O I
暂无
中图分类号
学科分类号
摘要
We study the standing waves of the nonlinear fractional Schrödinger equation. We obtain that when 0<γ<2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <2s$$\end{document}, the standing waves are orbitally stable; when γ=2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =2s$$\end{document}, the ground state solitary waves are strongly unstable to blow-up.
引用
收藏
页码:1017 / 1030
页数:13
相关论文
共 25 条
[1]  
Bao WZ(2011)Numerical methods for computing ground states and dynamics of nonlinear relativistic Hartree equation for boson stars J. Comput. Phys. 230 5449-5469
[2]  
Dong XC(1983)A relation between pointwise convergence of functions and convergence of functionals Proc. Am. Math. Soc. 88 486-490
[3]  
Brézis H(2014)On the orbital stability of fractional Schrödinger equations Commun. Pure Appl. Anal. 13 1267-1282
[4]  
Lieb EH(2007)Mean field dynamics of boson stars Commun. Pure Appl. Math. 60 500-545
[5]  
Cho Y(2007)Blowup for nonlinear wave equations describing boson stars Commun. Pure Appl. Math. 60 1691-1705
[6]  
Hwang G(2007)Dynamical collapse of white dwarfs in Hartree-and Hartree-Fock theory Commun. Math. Phys. 274 737-750
[7]  
Hajiaiej H(1998)Description du defaut de compacite de l’injection de Sobolev ESAIM Control Optim. Calc. Var. 3 213-233
[8]  
Ozawa T(2010)On blowup for time-dependent generalized Hartree-Fock Equations Ann. Henri Poincaré 11 1023-1052
[9]  
Elgart A(2005)Blowup theory for the critical nonlinear Schrödinger equations revisited Int. Math. Res. Not. 46 2815-2828
[10]  
Schlein B(2000)Fractional quantum mechanics and Lévy path integrals Phys. Lett. A 268 298-304