Extensions of n-Hom Lie algebras

被引:0
作者
Ruipu Bai
Ying Li
机构
[1] Hebei University,College of Mathematics and Computer Science
来源
Frontiers of Mathematics in China | 2015年 / 10卷
关键词
-Hom Lie algebra; representation; extension; -cocycle; 17B05; 17D99;
D O I
暂无
中图分类号
学科分类号
摘要
n-Hom Lie algebras are twisted by n-Lie algebras by means of twisting maps. n-Hom Lie algebras have close relationships with statistical mechanics and mathematical physics. The paper main concerns structures and representations of n-Hom Lie algebras. The concept of nρ-cocycle for an n-Hom Lie algebra (G, [, ...,], α) related to a G-module (V, ρ, β) is proposed, and a sufficient condition for the existence of the dual representation of an n-Hom Lie algebra is provided. From a G-module (V, ρ, β) and an nρ-cocycle θ, an n-Hom Lie algebra (Tθ(V),[, ...,]θ, γ) is constructed on the vector space Tθ(V) = G⊕V, which is called the Tθ-extension of an n-Hom Lie algebra (G, [, ...,], α) by the G-module (V, ρ, β).
引用
收藏
页码:511 / 522
页数:11
相关论文
共 32 条
[1]  
Ammar F(2011)Representations and cohomology of J Geom Phys 61 1898-1913
[2]  
Mabrouk S(2009)-ary multiplicative Hom-Nambu-Lie algebras J Math Phys 50 083501-10
[3]  
Makhlouf A(2010)Generalization of J Phys A 43 293001-160
[4]  
Ataguema H(2008)-ary Nambu algebras and beyond Phys Rev 77 065008-228
[5]  
Makhlouf A(2010)-ary algebras: a review with applications J Math Phys 51 063505-140
[6]  
Silvestrov S(2012)Gauge symmetry and supersymmetry of multiple M2-branes Sci Sin Math 42 1-361
[7]  
Azcarraga J(2011)Realizations of 3-Lie algebras J Nonlinear Math Phys 18 151-297
[8]  
Izquierdo J(1972)Extensions of Ann Physics 70 193-182
[9]  
Bagger J(1985)-Lie algebras Sibirsk Mat Zh 26 126-2412
[10]  
Lambert N(2006)Derivations of the 3-Lie algebra realized by J Algebra 295 314-3326