The Packing Density of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-Dimensional Cross-Polytope

被引:0
作者
G. Fejes Tóth
F. Fodor
V. Vígh
机构
[1] MTA Alfréd Rényi Institute of Mathematics,Department of Geometry, Bolyai Institute
[2] University of Szeged,Department of Mathematics and Statistics
[3] University of Calgary,undefined
关键词
Blichfeldt’s method; Cross-polytope; Density; Packing;
D O I
10.1007/s00454-015-9699-5
中图分类号
学科分类号
摘要
The packing density of the regular cross-polytope in Euclidean n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-space is unknown except in dimensions 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document} where it is 1. The only non-trivial upper bound is due to Gravel et al. [Discrete Comput Geom 46(4):799–818, 2011], who proved that for n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} the packing density of the regular octahedron is at most 1-1.4…×10-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1.4\ldots \times 10^{-12}$$\end{document}. In this paper, we prove upper bounds for the packing density δ(Xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (X^n)$$\end{document} of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-dimensional regular cross-polytope Xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^n$$\end{document}. It turns out that δ(Xn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (X^n)$$\end{document} approaches zero exponentially fast with growing dimension. Our bound is non-trivial, that is, less than 1, for n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 7$$\end{document}.
引用
收藏
页码:182 / 194
页数:12
相关论文
共 28 条
[1]  
Ball K(1992)A lower bound for the optimal density of lattice packings Int. Math. Res. Not. 10 217-221
[2]  
Betke U(1993)Intrinsic volumes and lattice points of cross-polytopes Monatsh. Math. 115 27-33
[3]  
Henk M(1929)The minimum value of quadratic forms, and the closest packing of spheres Math. Ann. 101 605-608
[4]  
Blichfeldt HF(1999)Random projections of regular polytopes Arch. Math. (Basel) 73 465-473
[5]  
Böröczky K(2003)New upper bounds on sphere packings. I Ann. Math. (2) 157 689-714
[6]  
Henk M(2009)Optimality and uniqueness of the Leech lattice among lattices Ann. Math. (2) 170 1003-1050
[7]  
Cohn H(2014)Sphere packing bounds via spherical codes Duke Math. J. 163 1965-2002
[8]  
Elkies N(1993)Blichfeldt’s density bound revisited Math. Ann. 295 721-727
[9]  
Cohn H(2011)Upper bound on the packing density of regular tetrahedra and octahedra Discrete Comput. Geom. 46 799-818
[10]  
Kumar A(1979)Gitterpunktanzahl im Simplex und Wills’sche Vermutung Math. Ann. 239 271-288