Nitric Oxide: A Ubiquitous Signal Molecule for Enhancing Plant Tolerance to Salinity Stress and Their Molecular Mechanisms

被引:0
作者
Savita Bhardwaj
Dhriti Kapoor
Simranjeet Singh
Vandana Gautam
Daljeet Singh Dhanjal
Sadaf Jan
Praveen C. Ramamurthy
Ram Prasad
Joginder Singh
机构
[1] Lovely Professional University,Department of Botany, School of Bioengineering and Biosciences
[2] Indian Institute of Science,Interdisciplinary Centre for Water Research (ICWaR)
[3] Dr. Y. S. Parmar University of Horticulture and Forestry,College of Horticulture and Forestry
[4] Lovely Professional University,Department of Biotechnology, School of Bioengineering and Biosciences
[5] Mahatma Gandhi Central University,Department of Botany
来源
Journal of Plant Growth Regulation | 2021年 / 40卷
关键词
Nitric oxide; Salinity stress; Signaling molecules; Signal transduction;
D O I
暂无
中图分类号
学科分类号
摘要
Salinity is a major constraint of agricultural productivity globally and is recognized to be severely elevated by alterations in the climatic conditions. High salinity levels cause osmotic pressure and ionic imbalance and adversely affects plant’s morphological, physiological and biochemical aspects, which subsequently hampers plant growth or death of the plant. Furthermore, as alterations in soil properties lead to an acceleration in salinity levels, our concern of how plants cope with salinity stress is becoming progressively meaningful. In this context, various signaling moieties and cross-talk between several sensors and signal transduction pathways, are required to increase plant tolerance against salinity stress. To protect from salinity, plants secrete different signaling moieties that trigger several stress-adaptation responses and cause either plant acclimation or programmed cell death. Among these signaling molecules, nitric oxide (NO) is a multifaceted, small gaseous reactive moiety that regulates numerous plant developmental progressions and provides endurance to different abiotic factors, including salinity stress. NO is known to be significant for plants exposed to salinity stress. It improves plant potential to cope with salinity by boosting plant growth, photosynthetic activity, stomatal conductance, accumulation of compatible solutes, maintains ion homeostasis, and reverse oxidative damage by stimulating anti-oxidant defense apparatus. It also alters the expression of defense-associated genes, thereby influence the phenotypic response of plant genotypes. Thus, it was concluded that NO is a crucial signaling molecule which remarkably mitigate salinity-induced adverse effects in plants by regulating various developmental aspects in plants. The aim of the present review is to provide an overall update on the NO mediated salinity stress tolerance in plants including NO metabolism, signal transduction via inducing various genes and post-translational modifications (PTMs), plant growth, photosynthetic activity, mineral nutrition, anti-oxidant defense system, gene expression and its cross-talk with phytohormones and with hydrogen sulfide.
引用
收藏
页码:2329 / 2341
页数:12
相关论文
共 50 条
  • [1] Nitric Oxide: A Ubiquitous Signal Molecule for Enhancing Plant Tolerance to Salinity Stress and Their Molecular Mechanisms
    Bhardwaj, Savita
    Kapoor, Dhriti
    Singh, Simranjeet
    Gautam, Vandana
    Dhanjal, Daljeet Singh
    Jan, Sadaf
    Ramamurthy, Praveen C.
    Prasad, Ram
    Singh, Joginder
    JOURNAL OF PLANT GROWTH REGULATION, 2021, 40 (06) : 2329 - 2341
  • [2] Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance
    Zhou, Xianrong
    Joshi, Shrushti
    Khare, Tushar
    Patil, Suraj
    Shang, Jin
    Kumar, Vinay
    PLANT CELL REPORTS, 2021, 40 (08) : 1395 - 1414
  • [3] Exploring the Physiological and Molecular Mechanisms of Halophytes' Adaptation to High Salinity Environments: Implications for Enhancing Plant Salinity Tolerance
    Mohamed, Randa A.
    Khalil, Waleed F.
    Zaghloul, Mohamed S.
    CATRINA-THE INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 28 (01) : 93 - 107
  • [4] Nitric oxide as a bioactive signalling molecule in plant stress responses
    Arasimowicz, Magdalena
    Floryszak-Wieczorek, Jolanta
    PLANT SCIENCE, 2007, 172 (05) : 876 - 887
  • [5] Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance
    Xianrong Zhou
    Shrushti Joshi
    Tushar Khare
    Suraj Patil
    Jin Shang
    Vinay Kumar
    Plant Cell Reports, 2021, 40 : 1395 - 1414
  • [6] Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses
    Abhishek Singh
    Vishnu D. Rajput
    Shivani Lalotra
    Shreni Agrawal
    Karen Ghazaryan
    Jagpreet Singh
    Tatiana Minkina
    Priyadarshani Rajput
    Saglara Mandzhieva
    Athanasios Alexiou
    Environmental Geochemistry and Health, 2024, 46
  • [7] Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses
    Singh, Abhishek
    Rajput, Vishnu D.
    Lalotra, Shivani
    Agrawal, Shreni
    Ghazaryan, Karen
    Singh, Jagpreet
    Minkina, Tatiana
    Rajput, Priyadarshani
    Mandzhieva, Saglara
    Alexiou, Athanasios
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2024, 46 (05)
  • [8] Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress
    Nabi, Rizwana Begum Syed
    Tayade, Rupesh
    Hussain, Adil
    Kulkarni, Krishnanand P.
    Imran, Qari Muhammad
    Mun, Bong-Gyu
    Yun, Byung-Wook
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2019, 161 : 120 - 133
  • [9] Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives
    Parankusam, Santisree
    Adimulam, Srivani S.
    Bhatnagar-Mathur, Pooja
    Sharma, Kiran K.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [10] Polyamines and nitric oxide crosstalk in plant development and abiotic stress tolerance
    Tripathi, Durgesh K.
    Bhat, Javaid A.
    Ahmad, Parvaiz
    Allakhverdiev, Suleyman I.
    FUNCTIONAL PLANT BIOLOGY, 2023, 50 (02) : I - IV